• 제목/요약/키워드: assessment of converter

검색결과 36건 처리시간 0.022초

Evaluation and Design Tools for the Reliability of Wind Power Converter System

  • Ma, Ke;Zhou, Dao;Blaabjerg, Frede
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1149-1157
    • /
    • 2015
  • As a key part in the wind turbine system, the power electronic converter is proven to have high failure rates. At the same time, the failure of the wind power converter is becoming more unacceptable because of the quick growth in capacity, remote locations to reach, and strong impact to the power grid. As a result, the correct assessment of reliable performance for power electronics is a crucial and emerging need; the assessment is essential for design improvement, as well as for the extension of converter lifetime and reduction of energy cost. Unfortunately, there still exists a lack of suitable physic-of-failure based evaluation tools for a reliability assessment in power electronics. In this paper, an advanced tool structure which can acquire various reliability metrics of wind power converter is proposed. The tool is based on failure mechanisms in critical components of the system and mission profiles in wind turbines. Potential methodologies, challenges, and technology trends involved in this tool structure are also discussed. Finally, a simplified version of the tool is demonstrated on a wind power converter based on Double Fed Induction Generator system. With the proposed tool structure, more detailed information of reliability performances in a wind power converter can be obtained before the converter can actually fail in the field and many potential research topics can also be initiated.

초기 설계단계 에너지 성능평가를 위한 IFC 기반 IDF 변환기 개발 (Development of the IFC based IDF Converter for Energy Performance Assessment in the Early Design Phase)

  • 김인한;김지은;최중식
    • 한국CDE학회논문집
    • /
    • 제16권2호
    • /
    • pp.146-155
    • /
    • 2011
  • As the seriousness of environmental pollution being on a rise, a low carbon and environment-friendly design for energy efficiency has been issued. With respect to energy in the construction industry, an adoption of BIM which is possible for the various energy performance assessments in the early design phase has been actively working on. In the most cases of energy performance assessment, the data compatibility from the lack of standard software and format became a problem and the improvement for data compatibility system has been needed. This study is to develop the IFC based IDF converter as a middleware which connects between BIM software and energy analysis software. For the building energy performance assessment, Energy Plus and IFC are selected for the standard energy analysis software and its file format. Parameters are organized by steps and the integrated material library is built so it is trying to reduce the existing problem of energy software interface as much as possible. The development of IDF Converter will promote the spread of related fields with increasing the BIM standard and the utilization of energy performance assessment.

Teaching Switching Converter Design Using Problem-Based Learning with Simulation of Characterization Modeling

  • Wang, Shun-Chung;Chen, Yih-Chien;Su, Juing-Huei
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.595-603
    • /
    • 2010
  • In this paper, teaching in a "switching converter (SC) design" course using problem-based learning (PBL) with dynamicbehavior- model simulation, given at Lunghwa University of Science and Technology (LHU), Taiwan, is proposed. The devised methodology encourages students to design and implement the SCs and regulate the controller's parameters in frequency domain by using 'sisitool' ('bode') in the MATLAB toolbox. The environment of PBL with converter characterization modeling and simulation reforms the learning outcome greatly and speeds up the teaching-learning process. To qualify and evaluate the learning achievements, a hands-on project cooperated with the continuous assessment approach is performed to modulate the teaching pace and learning direction in good time. Results from surveys conducted in the end of the course provided valuable opinions and suggestions for assessing and improving the learning effect of the proposed course successively. Positive feedbacks from the examinations, homework, questionnaires, and the answers to the lecturer's quizzes during class indicated that the presented pedagogy supplied more helpfulness to students in comparisons with conventional teaching paradigm, their learning accomplishments were better than expected as well.

A Trade-Off between the Efficiency, Ripple and Volume of a DC-DC Converter

  • Taherbaneh, Mohsen;Rezaie, Amir H.;Ghafoorifard, Hasan;Mirsamadi, Maddad;Menh, Mohammad B.
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.621-631
    • /
    • 2011
  • In space qualified DC-DC converters, optimization of the following electrical characteristics is of greater interest in comparison with other specifications; power loss/efficiency, output voltage ripple and volume/weight. The main goal of this paper is to present an appropriate solution for optimizing the above mentioned characteristics. For this purpose, a comprehensive power loss model of a DC-DC converter is fully developed. Proper models are also demonstrated for assessment of the output voltage ripple and the utilized transformer volume as the bulkiest component in a DC-DC converter. In order to provide a test bed for evaluation of the proposed models, a 50W push-pull DC-DC converter is designed and implemented. Finally, a novel cost function with three assigned weight functions is proposed in order to have a trade-off among the power loss, the output voltage ripple and the utilized transformer volume of the converter. The cost function is optimized for applications in which volume has the highest priority in comparison with power loss and ripple. The optimization results show that the transformer volume can be decreased by up to 51% and this result is verified by experimental results. The developed models and algorithms in this paper can be used for other DC-DC converter topologies with some minor modifications.

전해조 부하의 고조파 측정 및 평가에 관한 연구 (A Study on the Harmonics Measurement and Assessment of the Electrolyzer Loads)

  • 김경철;이주홍;진성은;박상영;이일무;전영수
    • 조명전기설비학회논문지
    • /
    • 제20권2호
    • /
    • pp.29-37
    • /
    • 2006
  • 중화학 공업은 전해조를 포함한 비선형 부하를 가지고 있다. AC-DC 컨버터가 화학공장의 전해조에 널리 쓰이고 있고, 전해조는 DC에 연결된 구조이다. 컨버터는 고조파 전류를 발생시키고, 전력계통의 전압을 왜곡시킨다. 본 논문에서는 전해조 부하의 고조파 현장 측정과 국제 고조파 관리 기준인 IEC 61000-3-6과 IEEE 519-1992에 의한 고조파 평가를 심도있게 분석한다.

A Reliability Evaluation Model for the Power Devices Used in Power Converter Systems Considering the Effect of the Different Time Scales of the Wind Speed Profile

  • Ji, Haiting;Li, Hui;Li, Yang;Yang, Li;Lei, Guoping;Xiao, Hongwei;Zhao, Jie;Shi, Lefeng
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.685-694
    • /
    • 2016
  • This paper presents a reliability assessment model for the power semiconductors used in wind turbine power converters. In this study, the thermal loadings at different timescales of wind speed are considered. First, in order to address the influence of long-term thermal cycling caused by variations in wind speed, the power converter operation state is partitioned into different phases in terms of average wind speed and wind turbulence. Therefore, the contributions can be considered separately. Then, in regards to the reliability assessment caused by short-term thermal cycling, the wind profile is converted to a wind speed distribution, and the contribution of different wind speeds to the final failure rate is accumulated. Finally, the reliability of an actual power converter semiconductor for a 2.5 MW wind turbine is assessed, and the failure rates induced by different timescale thermal behavior patterns are compared. The effects of various parameters such as cut-in, rated, cut-out wind speed on the failure rate of power devices are also analyzed based on the proposed model.

Failure of Ammonia Synthesis Converter Due to Hydrogen Attack and Its On-Stream Assessment Using ToFD Method

  • Albiruni, Farabirazy;Lee, Joon-Hyun
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.132-137
    • /
    • 2008
  • A failure analysis of ammonia converter which suffered hydrogen attack in two years since its initial operating time was presented. It is constructed from 2.25 Cr.1 Mo steel. Analysis showed that the failure on closing seam weld joint was due to local improper post weld heat treatment (PWHT). Improper PWHT can introduce high residual stresses in thick-walled pressure vessel. High residual stress level in weld joint is very prone to hydrogen attack for any components which are operating in hydrogen gas environment. The repair procedures based on the principle to decrease the residual stress then proposed. The repair was controlled very carefully by applying several nondestructive tests in the each stage of repair. To assure the successful of the proposed repair, after one year since repair time, high temperature ultrasonic and TOFD methods were applied on-stream to this equipment in order to evaluate its post repair condition. The two methods showed good results on the repaired area.

  • PDF

한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구 (Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration)

  • 김은수;오광명;박홍래
    • 에너지공학
    • /
    • 제28권1호
    • /
    • pp.65-72
    • /
    • 2019
  • 한국정부는 재생에너지를 이용한 발전량 비중을 2030년까지 총 발전량의 20%까지 높이겠다는 목표를 제시하였다. 풍부한 해양 신재생에너지 자원은 한국정부가 이 목표를 달성하는데 중요한 역할을 할 수 있을 것이다. 이 논문은 1.0 m/s의 낮은 유속에서도 높은 효율을 달성할 수 있는 유동유발진동 현상을 이용한 조류에너지 발전기술을 소개하고 한국 7개 해안의 평균유속을 바탕으로 높은 효율을 달성할 수 있는 유동유발진동 발전기의 최적 설계를 제안하고자 한다. 또한, 이를 바탕으로 각 해안에서 발전할 수 있는 이론적 잠재량을 산정하고자 한다. 유동유발 발전기술을 이용한 연간 이론적 최대발전량은 221.77 TWh로 예측되었고 이는 2013년 한국의 총 전력소비량의 42.3%에 해당한다. 본 연구결과는 유동유발진동을 이용한 발전기술을 이용한 조류발전기술이 한국 정부가 제시한 목표를 달성하는데 중요한 역할을 할 수 있음을 보여준다.

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

The technological state of the art of wave energy converters

  • GURSEL, K. Turgut
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.103-129
    • /
    • 2019
  • While global demand for energy increases annually, at the same time the demand for carbon-free, sulphur-free and NOx-free energy sources grows considerably. This state poses a challenge in the research for newer sources like biomass and shale gas as well as renewable energy resources such as solar, wind, geothermal and hydraulic energy. Although wave energy also is a form of renewable energy it has not fully been exploited technically and economically so far. This study tries to explain those reasons in which it is beyond doubt that the demand for wave energy will soon increase as fossil energy resources are depleted and environmental concerns gain more importance. The electrical energy supplied to the grid shall be produced from wave energy whose conversion devices can basically work according to three different systems. i. Systems that exploit the motions or shape deformations of their mechanisms involved, being driven by the energy of passing waves. ii. Systems that exploit the weight of the seawater stored in a reservoir or the changes of water pressure by the oscillations of wave height, iii. Systems that convert the wave motions into air flow. One of the aims of this study is to present the classification deficits of the wave energy converters (WECs) of the "wave developers" prepared by the European Marine Energy Center, which were to be reclassified. Furthermore, a new classification of all WECs listed by the European Marine Energy Center was arranged independently. The other aim of the study is to assess the technological state of the art of these WECs designed and/or produced, to obtain an overview on them.