• Title/Summary/Keyword: assemblability

Search Result 23, Processing Time 0.015 seconds

A Knowledge-Based Approach to Design for Assembly (자동조립을 위한 제품설계 전문가 시스템)

  • Kim, Kwang-Soo
    • IE interfaces
    • /
    • v.4 no.2
    • /
    • pp.81-92
    • /
    • 1991
  • A study showed that the two most important obstacles to assembly automation were that product designs are generally not assembly oriented and that most components cannot be handled automatically without problems. In the view of the importance of well designed product with high assemblability, a tool must be developed to pre-evaluate a product during design phase whether it can be assembled with minimum efforts. In this research, a prototype expert system for DFA has been developed that can be used to advise the designer of difficulties that his/her design presents for automatic handling during manufacture. This rule-based system has been implemented on an IBM personal computer, using the Texas Instruments' Personal Consultant Plus.

  • PDF

Case Study of Accumulated Tolerance Analysis Using Monte Carlo Simulation for a Portable Medical Appliance (몬테카를로 시뮬레이션을 이용한 휴대용 의료기기 누적공차분석에 대한 사례연구)

  • Lee, Young Hoon;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.83-92
    • /
    • 2016
  • Tolerances are defined as the allowable variations in the geometry and positioning of parts in a mechanical assembly for assuring its proper functionality. Tolerance analysis is the activity related to estimating the potential accumulated variation in assemblies. If the estimated variances go out of the specified ranges, it causes the quality problem. Thus, we should adjust the tolerances and this activity is called as tolerance design. In this paper, a case study on the accumulated tolerance analysis and design using Monte Carlo simulation is introduced, which is applied for developing a portable medical device. Using the simulation study, we can improve the assemblability and functionality of the product.

Study on Optimal Design and Analysis of Worm Gear and Casing of 5 Ton Class Worm Gear Reducer (5톤급 웜기어 감속기의 워엄기어와 케이싱의 최적설계 및 해석에 관한 연구)

  • Cho, Seong Hyun;Jeon, Chang Min;Qin, Zheon;Kim, Dongseon;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.15-21
    • /
    • 2019
  • The worm reducer is capable of quadrature power transmission when the shafts are disposed at right angles to each other. Since a large reduction ratio can be obtained of up to approximately 1/100 and a sliding movement is performed during operation compared with other gears, the noise and vibration are small, and there is the advantage that reverse rotation can be prevented. On the other hand, severe wear and damage are displayed on the gear and worm tooth surface, and many defects, such as intense heat generation of the reducer, occur. In the reducer case, the four-piece casing method was selected to solve the problems of heat generation, transmission efficiency, and assemblability. In this paper, we analyzed the problems of the worm and worm wheel (the core parts of a 5-Ton worm reducer) and casing through these methods and researched how to solve them.