• Title/Summary/Keyword: aspherical lens mold

Search Result 31, Processing Time 0.027 seconds

Tool Mark Removal Method of Aspherical Glass tens Mold by Reverse-rotational Eccentric Motion (역회전 편심 운동 방식에 의한 비구면 유리렌즈 금형의 공구마크 제거 방법에 관한 연구)

  • Lee, H.C.;Kim, J.U.;Kang, H.H.;Kim, D.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.172-176
    • /
    • 2009
  • In this paper, new aspherical surface polishing mechanism is suggested to polish aspherical glass lens mold by both airbag polishing tool and reverse-rotational eccentric motion. Up to now, conventional aspherical lens polishing method by the small tool polishing uses the aspherical surface profile and the trajectory of the polishing tool is also controlled. However, full contact concept by airbag polishing tool and no position control make the easy polishing setup and does not need aspherical design profile. An aspherical lens polishing machine was made for this study and a tool mark removal experiment fur the fine-grounded lens mold was successfully performed.

Full Contact Polishing Method of Aspherical Glass Lens Mold by Airbag Polishing Tool (에어백 공구에 의한 비구면 유리 렌즈 금형의 전면 접촉 연마)

  • Lee, Ho-Cheol;Kim, Jung-Uk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.82-88
    • /
    • 2008
  • Conventional aspherical lens polishing methods by the small tool polishing use aspherical profile and the trajectory of the polishing tool is also controlled. In this paper, new full contact polishing mechanism is suggested to polish aspherical glass lens mold by both airbag polishing tool and eccentric motion. Full contact concept by airbag polishing tool and no position control make the easy polishing setup and do not need aspherical design profile. An aspherical lens polishing machine was made for this study and a verification experiment was performed for surface roughness improvements.

A Study on PC-NC Based Aspherical Lens Polishing System with Minimum Translation Mechanism (최소 이송 기구를 갖는 PC-NC 기반의 비구면 렌즈 연마 장치에 관한 연구)

  • Yang, Min-Yang;Lee, Ho-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.65-71
    • /
    • 2001
  • The development process of the polishing system for the aspherical lens mold for opto-electronics industry is described. The system uses the method that polishing tool is scanned on the surface under PC-NC control for the aspherical lens mold. The two axes interpolation of the minimum translation mechanism is applied to give uniform working condition by motion analysis. An aspherical surface is divided into multiple sections and each dwell time is calculated from the polishing rate model based on the Preston equation. As result of form error compensation experiment, initial form error is decreased about 25% while an average value of surface roughness is also reduced successfully from 180nm to 19nm.

  • PDF

A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide-base $LCU_{CL}$ Core (초정밀 가공기를 이용한 $LSU_{CL}$ 코어 가공에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Lee B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1910-1913
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this paper, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base cores of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

A Study on Ultra Precision Grinding Characteristics of Tungsten Carbide $LCU\_CL$ Core (초경합금 소재 $LCU\_CL$ 코어의 초정밀 연삭 특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Lee Bongju
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.307-312
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide (초경합금의 초정밀 연삭특성에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Kim J.T.;Lee B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1737-1740
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

Transcription Characteristics of Mold Surface Topography in the Molding of Aspherical Glass Lenses

  • Cha, Du-Hwan;Hwang, Yeon;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.213-217
    • /
    • 2009
  • The transcription characteristics of the mold surface in the molding of aspherical glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. For the form topography, the molded lens showed a transcription ratio of 93.4% against the mold, which is obtained by comparing the form error (PV) values of the mold and the molded lens. The transcription characteristics of the roughness topography were ascertained by bearing ratio analysis.

Path Control of MR Fluid Jet Polishing System for the Polishing of an Aspherical Lens Mold Core (비구면 렌즈 몰드 코어 연마를 위한 MR Fluid Jet Polishing System의 경로 제어에 관한 연구)

  • Kim, K. B.;Cho, M. W.;Ha, S. J.;Cho, Y. K.;Song, K. H.;Yang, J. K.;Cai, Y.;Lee, J. W.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2015
  • MR fluid can change viscosity in the presence of a magnetic field. A characteristic of MR fluid is reduced scattering during jetting. For these reasons a MR fluid jet polishing system can be used for ultra-precision polishing. In the current paper, the polishing path was calculated considering the aspherical lens profile equation and the experimental conditions for the MR fluid jet polishing system. Then the polishing of an aspherical lens mold core using the MR fluid jet polishing system with the calculated path control was made and the results were compared before and after polishing.

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF