• 제목/요약/키워드: asphaltene aggregation

검색결과 2건 처리시간 0.017초

Effect of Dodecylbenzene Sulfonic Acid on the Behavior of Asphaltene Aggregation in a Solvent Deasphalting System

  • Liu, Lingyu;Go, Kang Seok;Nho, Nam Sun;Kim, Kwang Ho;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • 제56권1호
    • /
    • pp.14-23
    • /
    • 2018
  • The effect of dodecylbenzene sulfonic acid (DBSA) with different addition amount of DBSA ($M_{DBSA}$), temperatures and solvent-to-oil ratio (SOR, v/v) on asphaltene aggregation in a solvent deasphalting system was investigated. Increasing the $M_{DBSA}$ at SOR 10 and $55^{\circ}C$ caused the asphaltene removal ratio (ARR) to increase first, then maximize at 1 wt% of $M_{DBSA}$ and then decrease continuously. Based on the SARA (saturate, aromatic, resin, asphaltene) composition, the adsorption amount of DBSA on the asphaltene surface and the self-aggregation of the DBSA, the reason for the change in ARR with $M_{DBSA}$ was found due to the adsorption mechanism. In addition, the asphaltene-resin-DBSA colloidal size confirmed the change of adsorption behavior between the asphaltene and DBSA. Based on the results of this study, a hypothetical adsorption mechanism of DBSA on asphaltene aggregation in the solvent deasphalting system was conceived of and proposed.

아스팔텐에 대한 연구동향 (Review on Asphaltene Architecture)

  • 오경석
    • 한국응용과학기술학회지
    • /
    • 제31권1호
    • /
    • pp.151-158
    • /
    • 2014
  • Asphaltenes are generally defined by their solubility when a light alkane, such as n-heptane or n-pentane, is mixed with crude oils or oil sand bitumen. However, this definition is nowadays not enough to understand their behaviors during oil recovery, transport, storage, and even refinery operation. Interestingly, the researches regarding asphaltenes have been vastly presented within last decade. This is because the production of heavy oils is becoming larger and asphaltenes are known to play an important role in the property changes of heavy oils. In this paper, the researches regarding molecular weight, aggregation behavior of asphaltenes are introduced and discussed. It is expected that analytical studies will be appeared continuously in the form of global collaboration in order to describe asphaltene molecules as close as possible based on their origin.