Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.3
/
pp.93-101
/
2017
The distribution of inter-annual variation in temperature would help evaluate the likelihood of a climatic risk and assess suitable zones of crops under climate change. In this study, we evaluated two methods to estimate the standard deviation of temperature in the areas where weather information is limited. We calculated the monthly standard deviation of temperature by collecting temperature at 0600 and 1500 local standard time from 10 automated weather stations (AWS). These weather stations were installed in the range of 8 to 1,073m above sea level within a mountainous catchment for 2011-2015. The observed values were compared with estimates, which were calculated using a geospatial correction scheme to derive the site-specific temperature. Those estimates explained 88 and 86% of the temperature variations at 0600 and 1500 LST, respectively. However, it often underestimated the temperatures. In the spring and fall, it tended to had different variance (e.g., increasing or decreasing pattern) from lower to higher elevation with the observed values. A regression analysis was also conducted to quantify the relationship between the standard deviation in temperature and the topography. The regression equation explained a relatively large variation of the monthly standard deviation when lapse-rate corrected temperature, basic topographical variables (e.g., slope, and aspect) and topographical variables related to temperature (e.g., thermal belt, cold air drainage, and brightness index) were used. The coefficient of determination for the regression analysis ranged between 0.46 and 0.98. It was expected that the regression model could account for 70% of the spatial variation of the standard deviation when the monthly standard deviation was predicted by using the minimum-maximum effective range of topographical variables for the area.
As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.
Accurate information on habitat distribution of protected fauna is essential for the habitat management of Korea, a country with very high development pressure. The objectives of this study were to develop a habitat suitability model of wild boar based on GIS and logistic regression, and to create habitat distribution map, and to prepare the basis for habitat management of our country s endangered and protected species. The modeling process of this restudyarch had following three steps. First, GIS database of environmental factors related to use and availability of wild boar habitat were built. Wild boar locations were collected by Radio-Telemetry and GPS. Second, environmental factors affecting the habitat use and availability of wild boars were identified through chi-square test. Third, habitat suitability model based on logistic regression were developed, and the validity of the model was tested. Finally , habitat assessment map was created by utilizing a rule-based approach. The results of the study were as folos. First , distinct difference in wild boar habitat use by season and habitat types were found, however, no difference in wild boar habiat use by season and habitat types were found , however, ho difference by sex and activity types were found. Second, it was found, through habitat availability analysis, that elevation , aspect , forest type, and forest age were significant natural environmental factors affecting wild boar hatibate selection, but the effects of slope, ridge/valley, water, and solar radiation could not be identified, Finally, the habitat at cutoff value of 0.5. The model validation showed that inside validation site had the classification accuracy of 73.07% for total habitat and 80.00% for cover habitat , and outside validation site had the classification accuracy of 75.00% for total habitat.
The spread rate of forest fire was analyzed on Samcheok forest fire that broke out on April 7, 2000 in Kunduck-Myun, Samcheok-City, Kangwon-Province and lasted for about 9 days. The spatial database including topography, overstory species distribution, micro-climate, daily fire front lines for the area was built using GIS and the daily spread pattern was investigated to determine a multiple regression equation to estimate forest fire spread rate. The results of the investigation showed that, on the first day, the forest fire spreaded out extremely fast up to 12.3m/min at about 10 a.m. until noon. After that, the forest fire spread rate fluctuated and slowed down as low as below 1m/min and quenched on April 15. The daily area-based spread rate along the fire spread line got to the peak of about 5,700ha on April 11, of which spread rates were recorded as 2.84m/min in the first half and 1.10m/min in the second half. Also, it was found that slope aspect, wind velocity and % area distribution of Pinus densiflora are the major factors affecting the spread rate of forest fire in this area.
Journal of the Korean Association of Geographic Information Studies
/
v.5
no.1
/
pp.38-47
/
2002
This paper demonstrates a regional analysis of landslide occurrence potential by applying geographic information system to the Kumi City selected as a pilot study area. The estimate criteria related to natural and humane environmental factors which affect landslides were first established. A slope map and a aspect map were extracted from DEM, which was generated from the contour layers of digital topographic maps, and a NDVI vegetation map and a land cover map were obtained through satellite image processing. After the spatial database was constructed, indexes of landslide occurrence potential were computed and then a few landslide-potential areas were extracted by an overlay method. It was ascertained that there are high landslide-potential at areas of about 30% incline, aspects including either south or east at least, adjacent to water areas or pointed end of the water system, in or near fault zones, covered with medium vegetable. For more synthetic and accurate analysis, soil data, forest data, underground water level data, meteorological data and so on should be added to the spatial database.
Korean Journal of Agricultural and Forest Meteorology
/
v.7
no.1
/
pp.115-123
/
2005
Quantitative understanding of spatial characteristics of the study site is a prerequisite to investigate water and carbon cycles in agricultural and forest ecosystems, particularly with complex, heterogeneous landscapes. The spatial characteristics of variables related with topography, vegetation and soil in Gwangneung forest watershed are quantified in this study. To characterize topography, information on elevation, slope and aspect extracted from DEM is analyzed. For vegetation and soil, a land-cover map classified from LANDSAT TM images is used. Four satellite images are selected to represent different seasons (30 June 1999, 4 September 2000, 23 September 2001 and 14 February 2002). As a flux index for CO₂ and water vapor, normalized difference vegetation index (NDVI) is calculated from satellite images for three different grid sizes: MODIS grid (7km x 7km), intensive observation grid (3km x 3km), and unit grid (1km x 1km). Then, these data are analyzed to quantify the spatial scale of heterogeneity based on semivariogram analysis. As expected, the scale of heterogeneity decreases as the grid size decreases and are sensitive to seasonal changes in vegetation. For the two unit grids where the two 40 m flux towers are located, the spatial scale of heterogeneity ranges from 200 to 1,000m, which correspond well to the climatology of the computed tower flux footprint.
This study was conducted investigate population size and habitat use for the conservation and management of the endangered long-tailed goral in the Seoraksan National Park using feces and camera trap during 2010 to 2014 (track survey, camera trap). As a result of feces tracking and camera trap, its population size was estimated as 160 (camera trap)~251 (feces) individuals in the Seoraksan National Park. The goral prefer $35^{\circ}{\sim}60^{\circ}$ (slope), 600~700m (elevation), NE (aspect), 0~50m (distance to stream), 300~600m (distance to road) and bread-leaved forest (forest type) according to field tracking of fecal. Based on field camera trap, we estimated the age classes of goral populations and activity of gorals during day-time (07-18 time, 56.5%) and night-time (18-07 time, 43.5%). Such analyses of population size and habitat use of the goral could be applied as important fundamental data for conservation of gorals and management of their habitats.
Korean Journal of Agricultural and Forest Meteorology
/
v.10
no.1
/
pp.9-16
/
2008
In this study we investigated the effects of the microclimatic conditions on tree growth in different site types for natural deciduous forests in Korea. First, we classified all the sites into 36 types according to their aspect (east, west, south, and north), elevation (higher than 1,000 m, 700$\sim$1,000 m, and lower than 700 m), and topographical conditions (ridge, slope, and valley). For each site type, we measured diameter growth with increment borer, and then estimated periodic annual increment of diameter, height and volume. We applied a topoclimatological technique for estimating microclimatic conditions, and produced monthly climatic estimates from which 17 weather variables (including indices of warmth, coldness, and aridity) were computed for each site type. The periodic annual increments of diameter, height, and volume were then correlated by regression analysis with those weather variables to examine effects of microclimate on tree growth by site type. We found that the correlation of diameter growth by site type was significantly correlated with most weather variables except daily photoperiod. Water condition was the most important factor for the height growth. For volume growth, on the other hand, the conditions such as relatively high temperature and low humidity provided favorable environment. Our regression analysis shows that aridity index is a good predictor for tree growth including diameter, height and volume increments.
Parent material, climate, topography, biological factors, and time are considered five soil forming factors. This study was conducted to elucidate the effects of several environment factors on soil distribution using quantitative analysis method, called soil series estimation algorithm in the soils of Jeju Island. We selected environment factors including mean temperature, annual precipitation, surface geology, altitude, slope, aspect, altitude difference within 1 $km^2$ area, topographic wetness index, distance from the shore, distance from the mountain peak, and landuse for a quantitative analysis. We analyzed the ranges of environment factors for each soil series and calculated probabilities of possible-soil series for certain locations using estimation algorithm. The algorithm can predicted exact soil series on the soil map with correctness of 33% on $1^{st}$ ranking, 62% within $2^{nd}$ ranking, 74% within $5^{th}$ ranking after estimating using randomly extracted environment factors. In predicted soil map, soil sequences of Entisols-Alfisols-Andisols on northern area and Alfisols-Ultisols-Andisols on western area can be suggested along increasing altitude. More modeling studies will be needed for the genesis process of soils in Jeju Island.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.40
no.2
/
pp.91-108
/
2022
In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D images. One of the major sources of the 3D geospatial information is DSM (Digital Surface Model). In this matter, characteristic information derived from DSM would be effective to analyze 3D terrain features. Especially, man-made objects such as buildings having geometrically unique shape could be described by geometric elements that are obtained from 3D geospatial data. The background and motivation of this paper were drawn from concept of the intrinsic image that is involved in high-level visual information processing. This paper aims to extract buildings after classifying terrain features by training DL model with DSM-derived information including slope, aspect, and SRI (Shaded Relief Image). The experiments were carried out using DSM and label dataset provided by ISPRS (International Society for Photogrammetry and Remote Sensing) for CNN-based SegNet model. In particular, experiments focus on combining multi-source information to improve training performance and synergistic effect of the DL model. The results demonstrate that buildings were effectively classified and extracted by the proposed approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.