• Title/Summary/Keyword: ascorbate reductase

Search Result 60, Processing Time 0.022 seconds

Response of Antioxidative Enzymes of Two Rice Cultivars to Ozone Exposure and Nutrient Supply

  • Lee, Sang-Chul;Hwan, Cho-Jeong;Park, Shin-Young;Son, Tae-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Ozone ($O_3$)-induced changes in chlorophyll content and specific activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were investigated in two rice cultivars (Oryza sativa L.) grown under variable nutrient treatments. For this study, two rice cultivars of Ilpumbyeo (IL) and Keumobyeo#l (KM), which were known as resistant and susceptible to $O_3$, respectively, were exposed to $O_3$at 0.15ppm for 30 days and investigated with 10 days interval. The available nutrient regimes were varied by doubling the supply of nitrogen (N), phosphorus (P) and potassium (K) Within a basic fertilizer status (N, P, K; 15, 12, 12kg/l0a$^{-1}$ ). In both cultivars and at all nutrient status, chlorophyll content in $O_3$-treated plants decreased with prolonged treatment period, although higher N, P and K supply with $O_3$ treatment alleviated the decrease in chlorophyll content. The activities of almost all enzymes investigated for this study were decreased during initial stages of $O_3$- exposure except GPX which maintained higher activity throughout the exposure period than the non-treated plant. However, the antioxidant enzymes in $O_3$-treated plants showed almost the same or higher activities on 30 days after $O_3$ - exposure. The most significant changes in activities were observed in GR of the $O_3$-treated leaves. With the prolonged treatment period, the activity of GR at 30 days was increased by 3-8 times compared to those in 10 days. Most of the investigated enzymes showed very similar tendency to $O_3$ treatment in all fertilizer status. There was no observed evidence for enhanced detoxification of $O_3$-derived activated oxygen species in plants grown under higher fertilizer status compared with that in plants grown under basic fertilizer status. The increase in the activities of SOD, APX and GR in rice leaves by relatively long-term treatment with $O_3$ at low concentration is considered to indicate that the plant became adapted to the $O_3$ stress and the protection system increased its capacity to scavenge toxic oxygen species. Our results in two rice cultivars indicated that there was little difference in the activities of antioxidant enzymes between IL and KM, which were known as resistant and susceptible cultivar to $O_3$

  • PDF

Mechanisms of Chilling Tolerance in Relation to Antioxidative Enzymes in Rice

  • Kuk, Yong-In;Shin, Ji-San;Whang, Tay-Eak;Guh, Ja-Ock
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.341-351
    • /
    • 2002
  • In order to examine the mechanistic basis for differential sensitivities to chilling and subsequent recovery between two rice (Oryza sativa L.) cutivars, a chilling-tolerant japonica type (Ilpumbyeo) and a chilling-susceptible indica type (Taebaekbyeo), changes of physiological responses and antioxidant enzymes were investigated. Both cultivars at 3 leaf stage were exposed at a low temperature of $5^{\circ}C$ for 3 days and subsequently recovered in a growth chamber at a $25^{\circ}C$ for 5 days with 250 mmol $m^{-2}$ $s^{-1}$. Physiological parameters such as leaf fresh weight, relative water content, cellular leakage, lipid peroxidation, and chlorophyll a fluorescence showed that the chilling tolerant cultivar had a high tolerance during chilling. However, the chilling-susceptible cultivar revealed severe chilling damages. The chilling-tolerant cultivar was also faster in recovery than the chilling-susceptible cultivar in all parameters examined. We analyzed the activity and isozyme profiles of four antioxidant enzymes which are: superoxide dismutase (SOD), caltalase (CAT), ascorbate peroxidase (APX), and glutation reductase (GR). We observed that chilling-tolerance was due to a result of the induced or higher antioxidant enzyme system, CAT and APX in leaves and SOD, CAT, APX, and GR in roots. Especially, we observed the most significant differences between the chilling-tolerant cultivar and -susceptible cultivar in CAT and APX activity. Also in isozyme profiles, CAT and APX band intensity in the chilling-tolerant cultivar was distinctively higher than in the chilling-susceptible cultivars during chilling and recovery. Thus, the cold stability of CAT and APX are expected to contribute to a tolerance mechanism of chilling in rice plants. In addition, the antioxidative enzymes activity in roots may be more important than in that of leaves to protect chilling damage on rice plants.

Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • LEE Haeng-Soon;KIM Kee-Yeun;KWON Suk-Yoon;KWAK Sang-Soo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21s1 century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF

Antioxidant Enzyme Responses against Abiotic and Biotic Stresses in Rehmannia glutinosa L. and Glycine max L.

  • Moon, Yu-Ran;Lim, Jeong-Hyun;Park, Myoung-Ryoul;Yu, Chang-Yeon;Chung, Ill-Min;Yang, Deok-Chun;Yun, Song-Joong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.360-365
    • /
    • 2004
  • Rehmannia glutinosa shows a high level of resistance to the non-selective herbicide paraquat. To characterize the antioxidant enzyme system of R. glutinosa, we comparatively examined the responses of antioxidant enzymes to UV, wounding and a general elicitor yeast extract in R. glutinosa and soybean. The levels of enzyme activities of the two plant species were drastically different between those per fresh weight (general activity) and per protein (specific activity) bases. The general activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and glutathione reductase (GR) were lower, but that of ascorbate peroxidase (APX) was higher in R. glutinosa than in soybean. The specific activities of the enzymes, however, were about two- to seven-fold higher in R. glutinosa than in soybean, except that of CAT, which was about 12-fold higher in soybean. The general and specific enzyme activities of R. glutinosa relative to those of soybean showed a consistent increase in responses to the stresses only in SOD. The specific activities of SOD and APX were higher in R. glutinosa in all stress treatments. The results might suggest a relatively higher contribution of SOD and APX to the stress tolerance.

Activity of Antioxidant Enzymes during Senescence in Rice Seedlings

  • Lee, Cheol-Ho;Lee, Shin-Woo;Chun, Hyun-Sik;Moon, Byoung-Yong;Lee, Byeong-Seok;Koo, Jeung-Suk;Lee, Chin-Bum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.12-18
    • /
    • 2004
  • Activity of senescence-induced antioxidant enzymes in the detached rice seedlings (Oryza sativa L. cv. Dongjin) was examined. The levels of $\textrm{H}_2\textrm{O}_2$ content and peroxidase (POD) activity were gradually increased during leaf senescence, whereas catalase activity was decreased. The activity of superoxide dismutase (SOD) was increased, and ascorbate peroxidase (APX) and glutathione reductase (GR) were slightly increased until 3d and 4d of dark induced-senescence, and thereafter were decreased. The activation of all SOD isoforms showed a significant decrease after 6d and 7d. After 4d to 7d of dark senescence, there was a significant effect in enhancing the activity of APX-12 and -13 isoforms as compared with light, despite similar levels in total APX activity. GR-8 and -10 isoforms were more effective in leaf senescence at 4d to 7d, particularly with respect to dark-induced senescence. These results suggest that the metabolism of active oxygen species such as $\textrm{H}_2\textrm{O}_2$ is dependent on various functionally interrelated antioxidant enzymes such as catalase, peroxidase, SOD, APX and GR.

The Activities of Antioxidant Enzymes in Response to Oxidative Stresses and Hormones in Paraquat-tolerant Rehmannia glutinosa Plants

  • Choi, Dong-Geun;Yoo, Nam-Hee;Yu, Chang-Yeon;De Los Reyes, Benildo;Yun, Song-Joong
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.618-624
    • /
    • 2004
  • All members of R. glutinosa show the unique characteristic of intrinsic tolerance to paraquat (PQ). Antioxidant enzymes have been proposed to be the primary mechanism of PQ resistance in several plant species. Therefore, the antioxidant enzyme systems of R. glutinosa were evaluated by comparatively analyzing cellular antioxidant enzyme levels, and their responses of oxidative stresses and hormones. The levels of ascorbate peroxidase (APX), glutathione reductase (GR), non-specific peroxidase (POX), and superoxide dismutase (SOD) were 7.3-, 4.9-, 2.7- and 1.6-fold higher in PQ-tolerant R. glutinosa than in PQ-susceptible soybeans. However, the activity of catalase (CAT) was about 12-fold higher in the soybeans. The activities of antioxidant enzymes reduced after PQ treatment in the two species, with the exception of POX and SOD in R. glutinosa, which increased by about 40%. Interestingly, the activities of APX, SOD and POX in R. glutinosa, relative to those in soybeans, were further increased by 49, 67 and 93% after PQ treatment. The considerably higher intrinsic levels, and increases in the relative activities of antioxidant enzymes in R. glutinosa under oxidative stress support the possible role of these enzymes in the PQ tolerance of R. glutinosa. However, the relatively lower levels of SOD versus PQ tolerance, and the mixed responses of antioxidant enzymes to stresses and hormones, suggest a possible alternative mechanism(s) for PQ tolerance in R. glutinosa.

Changes in Nutrient Composition, Antioxidant Properties, and Enzymes Activities of Snake Tomato (Trichosanthes cucumerina) during Ripening

  • Badejo, Adebanjo Ayobamidele;Adebowale, Adeyemi Philips;Enujiugha, Victor Ndigwe
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.90-96
    • /
    • 2016
  • Snake tomato (Trichosanthes cucumerina) has been cultivated and used as a replacement for Lycopersicum esculentum in many Asian and African diets. Matured T. cucumerina fruits were harvested at different ripening stages and separated into coats and pulps for analyses to determine their suitability for use in culinary. They were analyzed for the nutritional composition and antioxidant potential using different biochemical assays [1,1-diphenyl-2-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, and ferric reducing antioxidant power] and antioxidative enzymes activities. The nutritional composition revealed that T. cucumerina contains over 80% water and is very rich in fiber, thus it can serve as a good natural laxative. The lycopene and ${\beta}$-carotene contents were especially high in the ripe pulp with values of $21.62{\pm}1.22$ and $3.96{\pm}0.14mg$/100 g, respectively. The ascorbic acid content was highest in the pulp of unripe fruit with a value of $56.58{\pm}1.08mg$/100 g and significantly (P<0.05) decreased as ripening progressed. The antioxidant potential of the fruits for the 3 assays showed that unripe pulp> ripe coat> ripe pulp> unripe coat. There were decreases in the antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activities, with the exception of catalase, as ripening progressed in the fruits. These decreased activities may lead to the softening of the fruit during ripening. Harnessing the antioxidative potential of T. cucumerina in culinary through consumption of the coats and pulps will alleviate food insecurity and help maintain good health among many dwellers in sub-Saharan Africa and Southeast Asia.

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.

Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In;Shin, Ji-San
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.264-273
    • /
    • 2007
  • In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing (큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석)

  • Ho Yong Shin;Chang Yoon Ji;Ho Soo Kim;Jung-Sung Chung;Sung Hwan Choi;Sang-Soo Kwak;Yun-Hee Kim;Jeung Joo Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.1-10
    • /
    • 2023
  • Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.