• Title/Summary/Keyword: ascending temperature gradient

Search Result 5, Processing Time 0.022 seconds

Experimental Study on the Stimulating Effect of Commercial Moxa Combustion through the Measurement of Temperature - Focused on ascending temperature gradient and effective stimulating period - (온도 측정을 통한 상용 쑥뜸의 자극효과에 대한 실험적 연구 - 승온속도 및 유효자극기를 중심으로 -)

  • Lee, Geon-Mok;Lee, Gun-Hyee;Lee, Seung-Hoon;Yang, Myung-Bok;Go, Gi-Deok;Seo, Eun-Mi;Jang, Jong-Deok;Hwang, Byung-Chan
    • Journal of Acupuncture Research
    • /
    • v.19 no.3
    • /
    • pp.64-76
    • /
    • 2002
  • Objective : The purpose of this study is to investigate the mechanism and effect of moxibustion objectively and to be used as the quantitative data for developing the new thermal stimulating treatment by observing the combustion characteristics of commercial moxaes. Methods : We have selected two types(large-size moxa A(LMA), large-size moxa B(LMB)) among large moxaes used widely in the clinic. We examined combustion times, temperatures, temperature gradients in each period during a combustion of moxa. Results : 1. The ascending temperature gradient measured in the central point of non-contacted surface was fastest, the average ascending temperature gradient of both moxaes was $0.0384^{\circ}C/sec$, $0.0123^{\circ}C/sec$ respectively, 3.1 times faster in LMA. The maximum ascending temperature gradient was also about 2.9 times faster in LMA. The time required for the maximum ascending temperature gradient from ignition was 254sec, 411sec respectively. 2. The minimum descending temperature gradient in the retaining period was $-0.0250^{\circ}C/sec$, $-0.0090^{\circ}C/sec$ respectively and the average descending temperature gradient was $-0.0160^{\circ}C/sec$, $-0.0037^{\circ}C/sec$ respectively on the non-contact surface. 3. On the basis of the non-contact surface($A_I$), the time at which the effective stimulus period began to occur was about 264sec, 796sec respectively after an ignition, the time at which the maximum temperature began to occur was about 373sec, 1323sec respectively after an ignition, and the maximum temperature was $0.9^{\circ}C$ higher in LMA. The maximum ascending temperature gradient was also about 4.2 times faster in LMA. Conclusion : It was thought that not only the figure of moxicombustion device, but also the form and size of moxa had influence on the combustion characteristics deciding the performance of stimulus seriously.

  • PDF

Experimental Study on the Thermodynamic Characteristics of Commercial Small-size Moxa Combustion (상용 소형 쑥뜸의 열역학적 특성에 대한 실험적 연구)

  • Lee Geon-Mok;Hwang Yoo-Jin;Lee Gun-Hyee
    • Journal of Acupuncture Research
    • /
    • v.18 no.6
    • /
    • pp.171-187
    • /
    • 2001
  • Objective : Moxibustion has been proved efficacious for many diseases, but isn't widespread in the clinics due to a danger of skin burning, the smoke produced while burning a moxa combustion and so on. Therefore, another type of moxa that can be resolved these troubles is required. To improve the effect of moxibustion and develop the new thermal stimulating treatment, the performance of commercial moxibustion widely used are studied systematically and found out quantitatively. Methods : We have selected two types (small-size moxa A(sMA), small-size moxa B (sMB)) among small-size moxaes used widely in the clinic. We examined combustion time, various temperatures, temperature gradient in each period during a combustion of moxa. Results : 1. The combustion time in the preheating period appeared somewhat longer in sMA than in sMB. 2, The combustion time in the heating period appeared longer in sMA by 26% than in sMB. 3. The average temperature in the heating period was $37.6{\sim}37.8^{\circ}C\;in\;sMA\;and\;36.2{\sim}36.8^{\circ}C$ in sMB and the maximum temperature measured at a center of contact surface in sMA was $48.6^{\circ}C$, higher by over $2.8^{\circ}C$ than that of sMB moxibustion. 4. The average ascending temperature gradient in the heating period was $0.08{\sim}0.1^{\circ}C/sec$ in both moxaes, and the average ascending temperature gradient of heating period in sMB appeared larger. The maximum ascending temperature gradient appeared higher in sMB, and the time reaching maximum ascending temperature gradient appeared much earlier in sMA than in sMB. 5. The combustion time in the retaining period was around 100 sec in sMA and around 275 sec in sMB. 6. The average temperature in the retaining period was $42.2{\sim}46.0^{\circ}C\;in\;sMA\;and\;39.3{\sim}41.4^{\circ}C/sec$ in sMB. The minimum temperature in the retaining period was over $38.80^{\circ}C$ in sMA but just $34.7^{\circ}C$ in sMB. 7. The average descending temperature gradient in sMA was $-0.050{\sim}0.067^{\circ}C/sec$ and in sMB was $-0.030{\sim}0.037^{\circ}C/sec$ 8. The combustion time in the cooling period appeared longer over two times in sMA than in sMB, and the time which the cooling period (minimum temperature) finished at appeared later in sMB by 55 sec. 9. We classified the combustion process that the measured temperature rose over body heat($37^{\circ}C$) into the effective combustion period. The effective combustion time was 233.3 sec in sMA and 300.4 sec in sMB respectively, and was longer by about 29% in sMB. The average temperature and maximum temperature in the effective combustion time appeared higher in sMA. The time taken until the maximum temperature was reached was 225.1 sec in sMA and 244.5 sec in sMB, faster by about 20 sec in sMA. The maximum ascending temperature gradient during the effective combustion period appeared larger about 1.4 times in sMB, but the time when the maximum ascending temperature gradient happened was faster in sMA. Conclusion : It appears that sMB, compared with sMA, is proper if necessary to apply the long time and weak stimulus, because of the gentle stimulus during the relatively longer time. In contrast, sMA that the symmetrical combustion happened is proper if necessary to apply the short time and strong stimulus.

  • PDF

An Effects of the Strength Development of High Strength Mortar under Temperature History by Steam Curing (촉진양생에 의한 온도이력이 고강도 모르타르의 강도발현에 미치는 영향)

  • Kwon, Hee-Sung;Choi, Eung-Kyu;Lim, Nam-Ki;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.115-121
    • /
    • 2008
  • The present study performed low-pressure steam curing with mortar specimens in order to examine the temperature profile and strength development of steam curing in high-strength specimens of 100MPa. In addition, as a basic research to utilize PC products, we examined the effects of curing temperature and time in steam curing cycle on strength development resulting from the hydration of cement within the range of high strength by changing four factors affecting the quality of PC displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature - in various patterns, and analyzed the optimal strength development characteristic based on the relation between temperature profile and strength development. With regard to the high-temperature curing characteristic of PC, we performed an experiment on the strength characteristic according to the temperature profile of high-strength mortar, and from the results of the experiment according to curing characteristic, displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature, we drew conclusions as follows.

Effect of Heating Rate and Pressure on Pore Growth of Porous Carbon Materials

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Riu, Doh-Hyung
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Porous carbon materials were prepared with a thermal treatment of coal tar pitch at 550 in the Ar gas. Growth, merger, and distribution of pore were characterized with scanning electron microscopy as variation ascending temperature gradient and chamber pressure. After graphitizing at the 2600 (1 hr.), walls and connecting parts between pores were investigated with X-ray diffraction patterns. Wall thickness and pore size decreases as increasing ascending temperature gradient, and pore size becomes homogeneous. Graphite quality and thermal conductivity become higher due to the enhanced orientation of walls and connecting parts between pores.

  • PDF

Experimental Study on the Characteristics of Combustion in Indirect Moxibustion with Garlic (마늘뜸의 연소특성에 관한 연구)

  • Lee, Geon-mok;Lee, Geon-hyee;Cho, Nam-geun;Park, So-young
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.31-51
    • /
    • 2004
  • Objective: The propose of this study is to investigate the characteristics of combustion in indirect moxibustion with garlic. Methods: We observed the characteristics of combustion by the variations of the thickness(3mm, 4mm, 5mm) of a slice for indirect moxibustion with garlic and mass(80mg, 100mg, 120mg) of moxa cone and existence of holes. The temperature of indirect moxibustion for garlic insulation with holes was higher than temperature of indirect moxibustion for garlic insulation without holes. Combustions time in the preheating period is about 1 minute, it varies by the existence of holes, the thickness of a slice for indirect moxibustion with garlic, and the density of moxa cone. Results: Maximum temperature of heating period was $38.7{\sim}46.2^{\circ}C$, combustion time in the heating period was 118~164sec and maximum ascending temperature gradient was $0.102{\sim}0.264^{\circ}C/sec$. Retaining period was shorter than heating period and stimulus of heating retains more, because it is higher than body temperature. By this report, indirect moxibustion with garlic is more effective with holes and the appropriate thickness of a slice for indirect moxibustion with garlic is 3.5~4mm. It is appropriate that the diameter of moxa cone is 8mm and height of that is 10mm. With this condition, effective combustion period is 120sec, maximum temperature is $42{\sim}44^{\circ}C$, maximum ascending temperature gradient is $0.14{\sim}0.16^{\circ}C/sec$. It is necessary to study clinical correlations for more accurate quantitative standard.

  • PDF