• 제목/요약/키워드: artificial satellite image

검색결과 94건 처리시간 0.022초

위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘 (Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images)

  • 김재희;이찬구;박종원
    • 한국멀티미디어학회논문지
    • /
    • 제19권4호
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

인공위성 영상의 객체인식을 위한 영상 특징 분석 (Feature-based Image Analysis for Object Recognition on Satellite Photograph)

  • 이석준;정순기
    • 한국HCI학회논문지
    • /
    • 제2권2호
    • /
    • pp.35-43
    • /
    • 2007
  • 본 논문은 특징검출(feature detection)과 특징해석(feature description) 기법을 이용하여, 영상 매칭 (matching)과 인식(recognition)에 필요한 다양한 파라미터의 변화에 따른 인식률의 차이를 분석하기 위한 실험 내용을 다룬다. 본 논문에서는 영상의 특징분석과 매칭프로세스를 위해, Lowe의 SIFT(Scale-Invariant Transform Feature)를 이용하며, 영상에서 나타나는 특징을 검출하고 해석하여 특징 데이터베이스로 구축한다. 특징 데이터베이스는 구글 어스를 통해 획득한 위성영상으로부터 50여개 건물에 대해 구축되는데, 이는 각 건물 영상으로부터 추출된 특징 점들의 좌표와 128차원의 벡터의 값으로 이루어진 특징 해석데이터로 저장된다. 구축된 데이터베이스는 각 건물에 대한 정보가 태그의 형식으로 함께 저장되는데, 이는 카메라로부터 획득한 입력영상과의 비교를 통해 입력영상이 가리키는 지역 내에 존재하는 건물에 대한 정보를 제공하는 역할을 한다. 실험은 영상 매칭과 인식과정에서 작용하는 내-외부적 요소들을 제시하고, 각 요소의 상태변화에 따라 인식률의 차이를 비교하는 방법으로 진행되었으며, 본 연구의 최종적인 시스템은 모바일기기의 카메라를 이용하여 카메라가 촬영하고 있는 지도상의 객체를 인식하고, 해당 객체에 대한 기본적인 정보를 제공할 수 있다.

  • PDF

고해상도 위성영상과 인공지능을 활용한 국토 변화탐지 및 모니터링 연구: 실증대상 지역인 정읍시를 중심으로 (A Study on the Land Change Detection and Monitoring Using High-Resolution Satellite Images and Artificial Intelligence: A Case Study of Jeongeup City)

  • 조나혜;이정주;김현덕
    • 지적과 국토정보
    • /
    • 제53권1호
    • /
    • pp.107-121
    • /
    • 2023
  • 실시간으로 변하는 국토를 광범위하게 취득하고, 이를 빠르고 정확하게 파악하기 위해 최근 공개 된 고해상도 국토위성 영상자료와 인공지능(AI; Artificial Intelligence)을 활용하고자 한다. 기존 위성 영상에 비해 국토위성의 경우 분광 및 주기 해상도가 높아져, 국토의 변화상을 주기적으로 모니터링하는 데 보다 적합한 자료원이 되었다. 따라서 본 연구는 국토위성을 취득하여 국토 변화를 탐지하기 위한 객체 8종을 선정하고, 이에 대한 데이터 셋 구축 및 AI 모델을 적용하여 분석하고자 한다. 다양한 유형의 객체 8종을 탐지하기 위한 최적의 모델과 변수 조건들을 확인하기 위해 여러 실험을 수행하고, AI 기반의 영상분석을 기술적으로 검토해보고자 한다.

다목적실용위성 영상처리 및 분석 (KOMPSAT Image Processing and Analysis)

  • 이광재;오관영;채성호;이선구
    • 대한원격탐사학회지
    • /
    • 제39권6_3호
    • /
    • pp.1671-1678
    • /
    • 2023
  • 다중 센서로 구성된 다목적실용위성 시리즈는 1999년 1호 발사 후 현재까지 국토 및 환경 모니터링, 재난 분석 등 다양한 분야에서 활용되어 왔다. 최근 빠르게 발전하고 있는 각종 정보처리기술(고속 컴퓨팅 기술, 컴퓨터 비전, 인공지능 등)들이 원격탐사 분야에서도 활용됨에 따라 보다 다양한 위성영상 처리 및 분석 알고리즘 개발이 가능하게 되었다. 본 특별호에서는 최근 연구된 다목적실용위성 영상 활용 관련 기술과 2023 위성정보활용 경진대회에 참여한 연구주제에 관하여 소개하고자 한다.

Classification of Water Areas from Satellite Imagery Using Artificial Neural Networks

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 2003
  • Every year, several typhoons hit the Korean peninsula and cause severe damage. For the prevention and accurate estimation of these damages, real time or almost real time flood information is essential. Because of weather conditions, images taken by optic sensors or LIDAR are sometimes not appropriate for an accurate estimation of water areas during typhoon. In this case SAR (Synthetic Aperture Radar) images which are independent of weather condition can be useful for the estimation of flood areas. To get detailed information about floods from satellite imagery, accurate classification of water areas is the most important step. A commonly- and widely-used classification methods is the ML(Maximum Likelihood) method which assumes that the distribution of brightness values of the images follows a Gaussian distribution. The distribution of brightness values of the SAR image, however, usually does not follow a Gaussian distribution. For this reason, in this study the ANN (Artificial Neural Networks) method independent of the statistical characteristics of images is applied to the SAR imagery. RADARS A TSAR images are primarily used for extraction of water areas, and DEM (Digital Elevation Model) is used as supplementary data to evaluate the ground undulation effect. Water areas are also extracted from KOMPSAT image achieved by optic sensors for comparison purpose. Both ANN and ML methods are applied to flat and mountainous areas to extract water areas. The estimated areas from satellite imagery are compared with those of manually extracted results. As a result, the ANN classifier performs better than the ML method when only the SAR image was used as input data, except for mountainous areas. When DEM was used as supplementary data for classification of SAR images, there was a 5.64% accuracy improvement for mountainous area, and a similar result of 0.24% accuracy improvement for flat areas using artificial neural networks.

  • PDF

위성원격탐사자료와 GIS를 이용한 인공어초 시설지 적지 선정 공간분포도 작성 연구 (A Study on Suitability Mapping for Artificial Reef Facility using Satellite Remotely Sensed Imagery and GIS)

  • 조명희;김병석;서영상
    • 대한원격탐사학회지
    • /
    • 제17권1호
    • /
    • pp.99-109
    • /
    • 2001
  • 연안해역의 어장환경정비와 인공어초(Artificial Reef) 어장조성사업을 효과적으로 실시하기 위해서는 어장환경과 해양환경과의 관련을 종합적으로 분석하여 어초적지 지역을 선정하는 기법의 도입이 필요하다. 본 연구에서는 남해안 통영만 지역을 대상으로 인공어초 시설지 적지 선정에서 가장 중요하다고 판단되는 어초 적지조사 1단계 요소 중 수온, 클로로필, 투병도, 수심 해저지질조선을 위성원격탐사 자료와 GIS를 이용하여 공간분포도를 작성하고, 인공어초 시설지 적지조건에 따른 가중치를 부여하여 공간분석을 실시함으로써 인공어초 시설 예정지에 대한 적지를 선정하였다. 위성원격탐사와 GIS를 이용한 인공어초 적지 선정기법은 어초의 적지선정에 있어 필요한 다량의 자료를 정성 및 정량적으로 데이터베이스화하여 분석함과 동시에 가시화함으로써 지방자치단체에서 보다 효율적인 어초시설의 관리를 하도록 하는데 본 연구의 목적이 있다.

기계학습 기반의 실시간 이미지 인식 알고리즘의 성능 (Performance of Real-time Image Recognition Algorithm Based on Machine Learning)

  • 선영규;황유민;홍승관;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.69-73
    • /
    • 2017
  • 본 논문에서는 기계학습 기반의 실시간 이미지 인식 알고리즘을 개발하고 개발한 알고리즘의 성능을 테스트 하였다. 실시간 이미지 인식 알고리즘은 기계 학습된 이미지 데이터를 바탕으로 실시간으로 입력되는 이미지를 인식한다. 개발한 실시간 이미지 인식 알고리즘의 성능을 테스트하기 위해 자율주행 자동차 분야에 적용해보았고 이를 통해 개발한 실시간 이미지 인식 알고리즘의 성능을 확인해보았다.

The Application of Satellite Image for Extracting Cultural Grounds of Laver

  • Jo, Myung-Hee;Jo, Yun-Won;Ha, Sung-Ryong;Choi, Kyung-Hwan;Jung, Yun-Jae
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.421-425
    • /
    • 2006
  • This study was to propose the spatial analysis method of extracting the spectral characteristic of cultural grounds of lavers in marine especially ApHae-myeon, ShinAn-gun, JellaNam-do, through using various satellite images. In addition, the information of cultural grounds of laver such as the existence of illegal cultural grounds of laver distribution was extracted through using satellite images and GIS analysis methods. For the further work, the spatial analysis to extract not only cultural grounds of laver business but also artificial facilities in marine will be proposed.

  • PDF

Comparison of vegetation recovery according to the forest restoration technique using the satellite imagery: focus on the Goseong (1996) and East Coast (2000) forest fire

  • Yeongin Hwang;Hyeongkeun Kweon;Wonseok Kang;Joon-Woo Lee;Semyung Kwon;Yugyeong Jung;Jeonghyeon Bae;Kyeongcheol Lee;Yoonjin Sim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.555-567
    • /
    • 2023
  • This study was conducted to compare the level of vegetation recovery based on the forest restoration techniques (natural restoration and artificial restoration) determined using the satellite imagery that targeted forest fire damaged areas in Goseong-gun, Gangwon-do. The study site included the area affected by the Goseong forest fire (1996) and the East Coast forest fire (2000). We conducted a time-series analysis of satellite imagery on the natural restoration sites (19 sites) and artificial restoration sites (12 sites) that were created after the forest fire in 1996. In the analysis of satellite imagery, the difference normalized burn ratio (dNBR) and normalized difference vegetation index (NDVI) were calculated to compare the level of vegetation recovery between the two groups. We discovered that vegetation was restored at all of the study sites (31 locations). The satellite image-based analysis showed that the artificial restoration sites were relatively better than the natural restoration sites, but there was no statistically significant difference between the two groups (p > 0.05). Therefore, it is necessary to select a restoration technique that can achieve the goal of forest restoration, taking the topography and environment of the target site into account. We also believe that in the future, accurate diagnosis and analysis of the vegetation will be necessary through a field survey of the forest fire-damaged sites.

Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구 (A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing)

  • 서형수;송인호;이칠우
    • 한국지리정보학회지
    • /
    • 제9권4호
    • /
    • pp.129-141
    • /
    • 2006
  • 인공위성을 이용한 원격탐사 기술의 비약적인 발전과 함께 지리, 해양 정보 등 사회전반에서 사용되는 영상 데이터량이 급속히 증가하고 있다. 따라서 대용량 원격탐사 영상의 해석을 위해서는 육안 검사보다 영상처리 기술을 이용한 자동화 방법이 필요하다. 본 연구에서는 인공위성 원격탐사 영상의 적조영역에 대해 GLCM(Gray Level Co-occurrence Matrix)을 이용하여 질감 정보를 취득하고, 이 데이터로부터 주성분 분석을 통해 적조영역을 자동으로 검출하는 방법에 대해 제안하였다. 기존의 적조영역 검출은 원격탐사 영상의 해색(sea color) 한 가지 특징에 의한 방법이 대부분이었으나 본 연구에서 GLCM의 질감 정보 8가지를 이용해서 2개의 주성분 누적 영상으로 변환시켰다. 연구결과 2개의 주성분 누적 영상의 백분율 분산 값은 90.4%였으며, 이를 해색 한 가지만을 이용한 적조영역 검출방법과 비교했을 때 보다 나은 결과를 나타내었다.

  • PDF