High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.
본 논문은 특징검출(feature detection)과 특징해석(feature description) 기법을 이용하여, 영상 매칭 (matching)과 인식(recognition)에 필요한 다양한 파라미터의 변화에 따른 인식률의 차이를 분석하기 위한 실험 내용을 다룬다. 본 논문에서는 영상의 특징분석과 매칭프로세스를 위해, Lowe의 SIFT(Scale-Invariant Transform Feature)를 이용하며, 영상에서 나타나는 특징을 검출하고 해석하여 특징 데이터베이스로 구축한다. 특징 데이터베이스는 구글 어스를 통해 획득한 위성영상으로부터 50여개 건물에 대해 구축되는데, 이는 각 건물 영상으로부터 추출된 특징 점들의 좌표와 128차원의 벡터의 값으로 이루어진 특징 해석데이터로 저장된다. 구축된 데이터베이스는 각 건물에 대한 정보가 태그의 형식으로 함께 저장되는데, 이는 카메라로부터 획득한 입력영상과의 비교를 통해 입력영상이 가리키는 지역 내에 존재하는 건물에 대한 정보를 제공하는 역할을 한다. 실험은 영상 매칭과 인식과정에서 작용하는 내-외부적 요소들을 제시하고, 각 요소의 상태변화에 따라 인식률의 차이를 비교하는 방법으로 진행되었으며, 본 연구의 최종적인 시스템은 모바일기기의 카메라를 이용하여 카메라가 촬영하고 있는 지도상의 객체를 인식하고, 해당 객체에 대한 기본적인 정보를 제공할 수 있다.
실시간으로 변하는 국토를 광범위하게 취득하고, 이를 빠르고 정확하게 파악하기 위해 최근 공개 된 고해상도 국토위성 영상자료와 인공지능(AI; Artificial Intelligence)을 활용하고자 한다. 기존 위성 영상에 비해 국토위성의 경우 분광 및 주기 해상도가 높아져, 국토의 변화상을 주기적으로 모니터링하는 데 보다 적합한 자료원이 되었다. 따라서 본 연구는 국토위성을 취득하여 국토 변화를 탐지하기 위한 객체 8종을 선정하고, 이에 대한 데이터 셋 구축 및 AI 모델을 적용하여 분석하고자 한다. 다양한 유형의 객체 8종을 탐지하기 위한 최적의 모델과 변수 조건들을 확인하기 위해 여러 실험을 수행하고, AI 기반의 영상분석을 기술적으로 검토해보고자 한다.
다중 센서로 구성된 다목적실용위성 시리즈는 1999년 1호 발사 후 현재까지 국토 및 환경 모니터링, 재난 분석 등 다양한 분야에서 활용되어 왔다. 최근 빠르게 발전하고 있는 각종 정보처리기술(고속 컴퓨팅 기술, 컴퓨터 비전, 인공지능 등)들이 원격탐사 분야에서도 활용됨에 따라 보다 다양한 위성영상 처리 및 분석 알고리즘 개발이 가능하게 되었다. 본 특별호에서는 최근 연구된 다목적실용위성 영상 활용 관련 기술과 2023 위성정보활용 경진대회에 참여한 연구주제에 관하여 소개하고자 한다.
Every year, several typhoons hit the Korean peninsula and cause severe damage. For the prevention and accurate estimation of these damages, real time or almost real time flood information is essential. Because of weather conditions, images taken by optic sensors or LIDAR are sometimes not appropriate for an accurate estimation of water areas during typhoon. In this case SAR (Synthetic Aperture Radar) images which are independent of weather condition can be useful for the estimation of flood areas. To get detailed information about floods from satellite imagery, accurate classification of water areas is the most important step. A commonly- and widely-used classification methods is the ML(Maximum Likelihood) method which assumes that the distribution of brightness values of the images follows a Gaussian distribution. The distribution of brightness values of the SAR image, however, usually does not follow a Gaussian distribution. For this reason, in this study the ANN (Artificial Neural Networks) method independent of the statistical characteristics of images is applied to the SAR imagery. RADARS A TSAR images are primarily used for extraction of water areas, and DEM (Digital Elevation Model) is used as supplementary data to evaluate the ground undulation effect. Water areas are also extracted from KOMPSAT image achieved by optic sensors for comparison purpose. Both ANN and ML methods are applied to flat and mountainous areas to extract water areas. The estimated areas from satellite imagery are compared with those of manually extracted results. As a result, the ANN classifier performs better than the ML method when only the SAR image was used as input data, except for mountainous areas. When DEM was used as supplementary data for classification of SAR images, there was a 5.64% accuracy improvement for mountainous area, and a similar result of 0.24% accuracy improvement for flat areas using artificial neural networks.
연안해역의 어장환경정비와 인공어초(Artificial Reef) 어장조성사업을 효과적으로 실시하기 위해서는 어장환경과 해양환경과의 관련을 종합적으로 분석하여 어초적지 지역을 선정하는 기법의 도입이 필요하다. 본 연구에서는 남해안 통영만 지역을 대상으로 인공어초 시설지 적지 선정에서 가장 중요하다고 판단되는 어초 적지조사 1단계 요소 중 수온, 클로로필, 투병도, 수심 해저지질조선을 위성원격탐사 자료와 GIS를 이용하여 공간분포도를 작성하고, 인공어초 시설지 적지조건에 따른 가중치를 부여하여 공간분석을 실시함으로써 인공어초 시설 예정지에 대한 적지를 선정하였다. 위성원격탐사와 GIS를 이용한 인공어초 적지 선정기법은 어초의 적지선정에 있어 필요한 다량의 자료를 정성 및 정량적으로 데이터베이스화하여 분석함과 동시에 가시화함으로써 지방자치단체에서 보다 효율적인 어초시설의 관리를 하도록 하는데 본 연구의 목적이 있다.
본 논문에서는 기계학습 기반의 실시간 이미지 인식 알고리즘을 개발하고 개발한 알고리즘의 성능을 테스트 하였다. 실시간 이미지 인식 알고리즘은 기계 학습된 이미지 데이터를 바탕으로 실시간으로 입력되는 이미지를 인식한다. 개발한 실시간 이미지 인식 알고리즘의 성능을 테스트하기 위해 자율주행 자동차 분야에 적용해보았고 이를 통해 개발한 실시간 이미지 인식 알고리즘의 성능을 확인해보았다.
Jo, Myung-Hee;Jo, Yun-Won;Ha, Sung-Ryong;Choi, Kyung-Hwan;Jung, Yun-Jae
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
/
pp.421-425
/
2006
This study was to propose the spatial analysis method of extracting the spectral characteristic of cultural grounds of lavers in marine especially ApHae-myeon, ShinAn-gun, JellaNam-do, through using various satellite images. In addition, the information of cultural grounds of laver such as the existence of illegal cultural grounds of laver distribution was extracted through using satellite images and GIS analysis methods. For the further work, the spatial analysis to extract not only cultural grounds of laver business but also artificial facilities in marine will be proposed.
This study was conducted to compare the level of vegetation recovery based on the forest restoration techniques (natural restoration and artificial restoration) determined using the satellite imagery that targeted forest fire damaged areas in Goseong-gun, Gangwon-do. The study site included the area affected by the Goseong forest fire (1996) and the East Coast forest fire (2000). We conducted a time-series analysis of satellite imagery on the natural restoration sites (19 sites) and artificial restoration sites (12 sites) that were created after the forest fire in 1996. In the analysis of satellite imagery, the difference normalized burn ratio (dNBR) and normalized difference vegetation index (NDVI) were calculated to compare the level of vegetation recovery between the two groups. We discovered that vegetation was restored at all of the study sites (31 locations). The satellite image-based analysis showed that the artificial restoration sites were relatively better than the natural restoration sites, but there was no statistically significant difference between the two groups (p > 0.05). Therefore, it is necessary to select a restoration technique that can achieve the goal of forest restoration, taking the topography and environment of the target site into account. We also believe that in the future, accurate diagnosis and analysis of the vegetation will be necessary through a field survey of the forest fire-damaged sites.
인공위성을 이용한 원격탐사 기술의 비약적인 발전과 함께 지리, 해양 정보 등 사회전반에서 사용되는 영상 데이터량이 급속히 증가하고 있다. 따라서 대용량 원격탐사 영상의 해석을 위해서는 육안 검사보다 영상처리 기술을 이용한 자동화 방법이 필요하다. 본 연구에서는 인공위성 원격탐사 영상의 적조영역에 대해 GLCM(Gray Level Co-occurrence Matrix)을 이용하여 질감 정보를 취득하고, 이 데이터로부터 주성분 분석을 통해 적조영역을 자동으로 검출하는 방법에 대해 제안하였다. 기존의 적조영역 검출은 원격탐사 영상의 해색(sea color) 한 가지 특징에 의한 방법이 대부분이었으나 본 연구에서 GLCM의 질감 정보 8가지를 이용해서 2개의 주성분 누적 영상으로 변환시켰다. 연구결과 2개의 주성분 누적 영상의 백분율 분산 값은 90.4%였으며, 이를 해색 한 가지만을 이용한 적조영역 검출방법과 비교했을 때 보다 나은 결과를 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.