• Title/Summary/Keyword: artificial satellite image

Search Result 94, Processing Time 0.03 seconds

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

Feature-based Image Analysis for Object Recognition on Satellite Photograph (인공위성 영상의 객체인식을 위한 영상 특징 분석)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • This paper presents a system for image matching and recognition based on image feature detection and description techniques from artificial satellite photographs. We propose some kind of parameters from the varied environmental elements happen by image handling process. The essential point of this experiment is analyzes that affects match rate and recognition accuracy when to change of state of each parameter. The proposed system is basically inspired by Lowe's SIFT(Scale-Invariant Transform Feature) algorithm. The descriptors extracted from local affine invariant regions are saved into database, which are defined by k-means performed on the 128-dimensional descriptor vectors on an artificial satellite photographs from Google earth. And then, a label is attached to each cluster of the feature database and acts as guidance for an appeared building's information in the scene from camera. This experiment shows the various parameters and compares the affected results by changing parameters for the process of image matching and recognition. Finally, the implementation and the experimental results for several requests are shown.

  • PDF

A Study on the Land Change Detection and Monitoring Using High-Resolution Satellite Images and Artificial Intelligence: A Case Study of Jeongeup City (고해상도 위성영상과 인공지능을 활용한 국토 변화탐지 및 모니터링 연구: 실증대상 지역인 정읍시를 중심으로)

  • Cho, Nahye;Lee, Jungjoo;Kim, Hyundeok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.107-121
    • /
    • 2023
  • In order to acquire a wide range of land that changes in real time and quickly and accurately grasp it, we plan to utilize the recently released high-resolution S.Korea's satellite image data and artificial intelligence (AI). Compared to existing satellite images, the spectral and periodic resolutions of S.Korea's satellite are higher, making them a more suitable data source for periodically monitoring changes in land. Therefore, this study aims to acquire S.Korea's satellite, select 8 types of objects to detect land changes, construct data sets for them, and apply AI models to analyze them. In order to confirm the optimal model and variable conditions for detecting 8 types of objects of various types, several experiments are performed and AI-based image analysis is technically reviewed.

KOMPSAT Image Processing and Analysis (다목적실용위성 영상처리 및 분석)

  • Kwang-Jae Lee;Kwan-Young Oh;Sung-Ho Chae;Sun-Gu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1671-1678
    • /
    • 2023
  • The Korea multi-purpose satellite (KOMPSAT) series consisting of multi-sensors has been used in various fields such as land, environmental monitoring, and disaster analysis since its first launch in 1999. Recently, as various information processing technologies (high-speed computing technology, computer vision, artificial intelligence, etc.) that are rapidly developing are utilized in the field of remote sensing, it has become possible to develop more various satellite image processing and analysis algorithms. In this special issue, we would like to introduce recently researched technologies related to the KOMPSAT image application and research topics participated in the 2023 Satellite Information Application Contest.

Classification of Water Areas from Satellite Imagery Using Artificial Neural Networks

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Every year, several typhoons hit the Korean peninsula and cause severe damage. For the prevention and accurate estimation of these damages, real time or almost real time flood information is essential. Because of weather conditions, images taken by optic sensors or LIDAR are sometimes not appropriate for an accurate estimation of water areas during typhoon. In this case SAR (Synthetic Aperture Radar) images which are independent of weather condition can be useful for the estimation of flood areas. To get detailed information about floods from satellite imagery, accurate classification of water areas is the most important step. A commonly- and widely-used classification methods is the ML(Maximum Likelihood) method which assumes that the distribution of brightness values of the images follows a Gaussian distribution. The distribution of brightness values of the SAR image, however, usually does not follow a Gaussian distribution. For this reason, in this study the ANN (Artificial Neural Networks) method independent of the statistical characteristics of images is applied to the SAR imagery. RADARS A TSAR images are primarily used for extraction of water areas, and DEM (Digital Elevation Model) is used as supplementary data to evaluate the ground undulation effect. Water areas are also extracted from KOMPSAT image achieved by optic sensors for comparison purpose. Both ANN and ML methods are applied to flat and mountainous areas to extract water areas. The estimated areas from satellite imagery are compared with those of manually extracted results. As a result, the ANN classifier performs better than the ML method when only the SAR image was used as input data, except for mountainous areas. When DEM was used as supplementary data for classification of SAR images, there was a 5.64% accuracy improvement for mountainous area, and a similar result of 0.24% accuracy improvement for flat areas using artificial neural networks.

  • PDF

A Study on Suitability Mapping for Artificial Reef Facility using Satellite Remotely Sensed Imagery and GIS (위성원격탐사자료와 GIS를 이용한 인공어초 시설지 적지 선정 공간분포도 작성 연구)

  • 조명희;김병석;서영상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2001
  • In order to establish effective fishing ground environment equipment and artificial reef in coastal area, the methodology to select the most suitable area for artificial reef should be applied after analyzing the correlation between fishing ground environment and ocean environment. In this paper, thematic maps were prepared by using satellite remote sensing and GIS for the sea surface temperature, chlorophyll, transparency, the depth of sea water and the condition of submarine geologic which are considered as the most elements when selecting suitable area for artificial reef in Tong-Yong bay. Then, the most suitable area for artificial reef was selected by giving weight score depending on the suitable condition of this area and analyzing spatial data. The results showed it makes possible for this methodology, which selects the suitable area for artificial reef using satellite remote sensing and GIS, to manage the institution of artificial reef more entirely and efficiently through analyzing and visualizing.

Performance of Real-time Image Recognition Algorithm Based on Machine Learning (기계학습 기반의 실시간 이미지 인식 알고리즘의 성능)

  • Sun, Young Ghyu;Hwang, Yu Min;Hong, Seung Gwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.69-73
    • /
    • 2017
  • In this paper, we developed a real-time image recognition algorithm based on machine learning and tested the performance of the algorithm. The real-time image recognition algorithm recognizes the input image in real-time based on the machine-learned image data. In order to test the performance of the real-time image recognition algorithm, we applied the real-time image recognition algorithm to the autonomous vehicle and showed the performance of the real-time image recognition algorithm through the application of the autonomous vehicle.

The Application of Satellite Image for Extracting Cultural Grounds of Laver

  • Jo, Myung-Hee;Jo, Yun-Won;Ha, Sung-Ryong;Choi, Kyung-Hwan;Jung, Yun-Jae
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.421-425
    • /
    • 2006
  • This study was to propose the spatial analysis method of extracting the spectral characteristic of cultural grounds of lavers in marine especially ApHae-myeon, ShinAn-gun, JellaNam-do, through using various satellite images. In addition, the information of cultural grounds of laver such as the existence of illegal cultural grounds of laver distribution was extracted through using satellite images and GIS analysis methods. For the further work, the spatial analysis to extract not only cultural grounds of laver business but also artificial facilities in marine will be proposed.

  • PDF

Comparison of vegetation recovery according to the forest restoration technique using the satellite imagery: focus on the Goseong (1996) and East Coast (2000) forest fire

  • Yeongin Hwang;Hyeongkeun Kweon;Wonseok Kang;Joon-Woo Lee;Semyung Kwon;Yugyeong Jung;Jeonghyeon Bae;Kyeongcheol Lee;Yoonjin Sim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.555-567
    • /
    • 2023
  • This study was conducted to compare the level of vegetation recovery based on the forest restoration techniques (natural restoration and artificial restoration) determined using the satellite imagery that targeted forest fire damaged areas in Goseong-gun, Gangwon-do. The study site included the area affected by the Goseong forest fire (1996) and the East Coast forest fire (2000). We conducted a time-series analysis of satellite imagery on the natural restoration sites (19 sites) and artificial restoration sites (12 sites) that were created after the forest fire in 1996. In the analysis of satellite imagery, the difference normalized burn ratio (dNBR) and normalized difference vegetation index (NDVI) were calculated to compare the level of vegetation recovery between the two groups. We discovered that vegetation was restored at all of the study sites (31 locations). The satellite image-based analysis showed that the artificial restoration sites were relatively better than the natural restoration sites, but there was no statistically significant difference between the two groups (p > 0.05). Therefore, it is necessary to select a restoration technique that can achieve the goal of forest restoration, taking the topography and environment of the target site into account. We also believe that in the future, accurate diagnosis and analysis of the vegetation will be necessary through a field survey of the forest fire-damaged sites.

A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing (Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구)

  • Sur, Hyung-Soo;Song, In-Ho;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.129-141
    • /
    • 2006
  • The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.

  • PDF