• Title/Summary/Keyword: artificial propagation

Search Result 533, Processing Time 0.024 seconds

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity (온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용)

  • Jeong, Hyo-Joon;Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

Identification of Speed of Induction Motor Drive using Artificial Neural Networks (인공 신경회로망을 이용한 유도전동기 드라이브의 속도 동정)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.203-205
    • /
    • 2003
  • This paper is proposed a newly developed approach to identify the mechanical speed of an induction motor based on artificial neural networks technique. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

The Prediction of Geometrical Configuration and Ductile Fracture Using the Artificial Neural network for a Cold Forged Product (신경망을 이용한 냉간 단조품의 기하학적 형상 및 연성파괴 예측)

  • Kim, D.J.;Ko, D.C.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.105-111
    • /
    • 1996
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and geomeytical configuration of deformation in metal forming processes using the artificial neural network. A three-layer neural network is used and a back propagation algorithm is adapted to train the network. The Cookcroft-Lathjam criterion is used to estimate whether fracture occurs during the deformation process. The geometrical configuration and the value of ductile fracture are measured by finite element method. The predictions of neural network and numerical results of simple upsetting are compared. The proposed scheme has successfully predicted the geometrical configuration and fracture initiation.

  • PDF

Multi-temporal Remote-Sensing Imag e ClassificationUsing Artificial Neural Networks (인공신경망 이론을 이용한 위성영상의 카테고리분류)

  • Kang, Moon-Seong;Park, Seung-Woo;Lim, Jae-Chon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.59-64
    • /
    • 2001
  • The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.

  • PDF

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF