• Title/Summary/Keyword: artificial photosynthesis

Search Result 53, Processing Time 0.032 seconds

A Study on Fluid Dynamics for Effect of Agitation Velocity on Nutrients Removal in High Rate Algae Stabilization Pond (고율 조류 안정화지에서 교반속도가 영양염류 제거에 미치는 영향에 관한 유체동역학적 연구)

  • 공석기
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2001
  • HRP(high rate pond) which had kept the manufactured clay of 3cm-thickness as benthic clay in reactor and the 6 flat-blade turbine as impeller for agitation was named HRASP(high rate algae stabilization pond). And the experiment for treatment of artificial synthesis wastewater containing COD :300mg/$\ell$, NH$_3$-N : 300mg/$\ell$, T-P : 9mg/$\ell$ as nutrients was been performed successfully. This reactor was been operated under conditions : 24hrs.-irradiation and water temperature, $25^{\circ}C$ and pH 7 and agitation velocity, 15, 30, 45rpm and the effect of agitation velocity on algal bioaccumulation of nutrients was been studied with view point of fluid dynamics. The next followings could be obtained as results. 1. The agitation with a turbine impeller blade in HRASP makes clay particle indicate superior suspension effect by means of forming of excellent curl/shear flow in reactor. 2. The excessive suspension of clay particle which is created at 45rpm as rotation velocity of impeller blade of turbine disturbs the light penetration and algal photosynthesis reaction. 3. Efficiencies for removal of nutrients come out as COD : 93.9%~94.3%, ($NH_3-N + NO_3-N$) : 81.9%~99.0%, T-P : 46.8%~53.6%. 4. Kuo values of $K_1$for algal growth come out seperately as 15rpm : $1.876{\times}10^{-2}, 30rpm : 4.618{\times}10^{-3}$. 5. Kuo values of $K_2$for removal of N, P come out seperately as 15rpm : $8.403{\times}10^{-1}$ and $1.397{\times}10^{-1}$, 30rpm : $4.823{\times}10^{-1} and 2.052{\times}10^{-1}$. 6. It can be guessed easily that the excessive agitation can inhibit the algal and bacterial symbiotic reaction if it is considered that micro organism\` sense to preservation of life is relied on natural function of metabolism. Therefore the studies for this matter should be followed continuously.

  • PDF

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa;Choi, Sung-Kyu;Jeong, Hye-Won;Kim, Seung-Do;Park, Hyun-Woong
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.

The effects of LED light quality on ecophysiological and growth responses of Epilobium hirsutum L., a Korean endangered plant, in a smart farm facility

  • Park, Jae-Hoon;Lee, Jung-Min;Kim, Eui-Joo;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.161-171
    • /
    • 2022
  • Background: Epilobium hirsutum L. is designated as an endangered plant in South Korea located in Asia, due to the destruction of its habitats through the development of wetlands. Therefore, in this study, in order to find a light condition suitable for the growth and ecophysiological responses of Epilobium hirsutum L., those of this plant under treatment with various light qualities in a smart farm were measured. Results: In order to examine the changes in the physiological and growth responses of Epilobium hirsutum L. according to the light qualities, the treatment with light qualities of the smart farm was carried out using the red light: blue light irradiation time ratios of 1:1, 1:1/2, and 1:1/5 and a red light: blue light: white light irradiation time ratio of 1:1:1. As a result, the ecophysiological responses (difference between leaf temperature and atmospheric temperature, transpiration rate, net photosynthetic rate, intercellular CO2 partial pressure, photosynthetic quantum efficiency) to light qualities appeared differently according to the treatments with light qualities. The increase in the blue light ratio increased the difference between the leaf temperature and the atmospheric temperature and the photosynthetic quantum efficiency and decreased the transpiration rate and the intercellular CO2 partial pressure. On the other hand, the white light treatment increased the transpiration rate and intercellular CO2 partial pressure and decreased the temperature difference between the leaf temperature and the ambient temperature and photosynthetic quantum efficiency. Conclusions: The light condition suitable for the propagation by the stolons, which are the propagules of Epilobium hirsutum L., in the smart farm, is red, blue and white mixed light with high net photosynthetic rates and low difference between leaf temperature and atmospheric temperature.

Photosynthesis and Formation of UV-absorbing Substances in Antarctic Macroalgae Under Different Levels of UV-B Radiation (중파자외선에 대한 남극산 해조류의 광합성 및 자외선 흡수물질 형성 반응)

  • 한태준;박병직;한영석;강성호;이상훈
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.205-215
    • /
    • 2002
  • Effects of artificial and solar W-B radiation on five rhodophytes (Curdiea racovitzae, Gigaytina skottsbergii, Mazzaella obovata, Myriogramme manginii, Palmaria decipiens) from Antarctica have been investigated using PAM fluorescence in laboratory and in the field. Laboratory studies showed that there were significant differences in the UV sensitivity between different species, and that the differences appeared to be correlated with the depth of collection of the specimens. It was apparent from the observations that the samples such as M. manginii and P. decipiens collected from 20-30 m depths were move sensitive to W-B radiation compared with those collected from shallower depths, The present study confirmed that an acclimation to the surrounding light regime could be an important factor to determine the UV-sensitivity of a species or individuals and that PAM measurements are rapid and non-destructive methods to evaluate UV influences. From field studies on M. manginii and P. decipiens it was observed that both plants exhibited changes in the effective quantum yield, with the minimum values nt noon followed by n recovery in the evening. Photoinhibition occurred in these species could therefore be accounted for by so- called dynamic photoinhibition. It seems likely that this protective mechanism may contribute to survival of the species in shallow water where they may encounter intense solar radiation. The presence or absence of the W- B component under solar radiation differently affected the photosynthetic recovery process, and the rate of recovery was much stoney in UV- present than in W- absent conditions. Functional role of W- B appears to delay the recovery of photosynthesis in the studied macroalgae. Differential sensitivity to UV-B recognised between M. manginii and P. decipiens seemed to correspond well with the amount of UV-absorbing substances (UVAS) contained in the respective species. Higher tolerance to solar radiation by the latter species may be due to the higher amount of UVAS. There were variations of UVAS concentrations in algal thalli depending on the season and depth of collection.

Effects of Supplemental Green LEDs to Red and Blue Light on the Growth, Yield and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) in Plant Factory (수경재배 식물공장에서 다양한 보광 LED가 시금치의 생육과 수량에 미치는 영향)

  • Dung, Nguyen Thi Phuong;Huyen, Tran Thi Thanh;Jang, Dong Cheol;Kim, Il Seop;Thach, Nguyen Quang
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.171-180
    • /
    • 2020
  • The effect of three different light qualities on growth, photosynthesis, quality and safe parameters of hydroponic cultivated spinach (Spinacia oleracea L.) were investigated indoor. Three different light qualities were created of red (660 nm), blue (450 nm) and green (550 nm) LEDs corresponding at ratio R660/B450 = 4/1 (RBL); R660/B450/G550= 5/2/3 (WWL); R660/B450/G550 = 1/1/1 (WL), which were tested at the same intensity (PPFD =190 μmol m-2 s-1). The results showed that the plant height and leaf number were the lowest in WL treatment. The SPAD, Net photosynthesis rate Pn, Fv/Fm, Leaf area index LAI values and all parameters of root characteristics were the highest in RBL treatment and were significantly different from two others. Fresh weight of stem, leaf and root, dry weight of root in the three light qualities were significantly different. In contrast, the highest K+ content in WL was different from WWL and RBL treatments, while Ca2+ and Fe2+ content were the highest in the RBL treatment. Vitamin C content was significantly different between the three treatments. nitrate and oxalic acid contents were the highest in WL treatment, whereas soluble-solids contents and vitamin C contents were the highest in RBL treatment. Oxalic acid, nitrate contents were observed tending reduced under WWL although oxalic acid content in RBL treatment was not different from WL and WWL treatments. In all three different light treatments were not detected Salmonella, E.coli. Our results suggest that RBL may be appropriate light for growth of spinach, but supplementary green light to a combination of red and blue LEDs at the reasonable rate can change the quality of spinach in a positive direction. Hydroponic cultivated spinach was safe for users.

Safety of the Herbicide Fluazifop-butyl application on the Korean Ginseng(Panax ginseng C.A. Meyer) (고려인삼(高麗人蔘)에 대한 제초제(除草劑) Fluazifob-butyl의 안전성(安全性))

  • Jo, Jae-Seong;Won, Jun-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.2
    • /
    • pp.146-150
    • /
    • 1995
  • Weed control in the Korean ginseng(Panax ginseng C.A. Meyer) garden is more difficult than in other crops because the ginseng is a perennial crop and has to be cultivated under the artificial shading. As hand weeding is the only practical means to control weed after crop establishment, a selective herbicide would greatly simplify the control of weed in ginseng garden. In an exploratory experiment, the hervicide Fluazifop-butyl was found to be selectively safe for the Korean ginseng plants. Various rates of Fluazifop-butyl were sprayed on 2-, 3-, and 4-years old ginseng plants as a foliar spray to detect crop injury and to difine their critical concentration. No apparent injury to the ginseng plant was noticable even the doubled application rate of Fluazifop-butyl the based on recommended dosage. Neither abnormal foliar change nor any inhibition in leaf and stem growth was resulted for 2-, 3-, and 4-years old ginseng plants treated with Fluazifop-butyl tripled the recommended usage. The foliar treatments of Fluazifop-butyl did not influence the photosynthesis ability but inhibited the respiration of the ginseng leaf.

  • PDF

Effect of Sodium in Artificial substrate on the Growth, Gas Exchange and Leaf Water Status of Cucumber (Cucumis sativa L.) and Korea Melon(Cucumis melo L.) (상토에 함유된 Na함량이 오이와 참외의 생육, 광합성 및 잎의 수분상태에 미치는 영향)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Chan-Yong;Park, So-Deuk;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Sodium is known to reduce a plant growth and yields. However, the relationships between physiological response of seedling and salinity stress caused by growing media are not well understood yet. We conducted experiments to investigate change of some parameters including Na, EC, moisture content in media under different air temperature ($15^{\circ}C$, $25^{\circ}C$), and the response of fruit-vegetables such as cucumber, oriental melon on saline conditions originated from horticultural substrate. Volumetric moisture content of media at $15^{\circ}C$ was 70%, but at $25^{\circ}C$ was decreased by 45% within 22 hrs, showing below optimal matric potential, approximately. During reaction time, the increase of Na concentration was significantly greater in saline substrate than in control. The decrease rate of Na concentration according to supplying irrigation water was higher in saline substrate than in control. $CO_2$ assimilation rate and transpiration rate of Korea melon grown in low temperature were decreased with a Na/cation ratio in hydroponic solution. Water saturation deficit was also increased significantly at $15^{\circ}C$ as compare to $25^{\circ}C$. Saline stress during nursery stage induced a reduction of seedling quality, growth and cucumber yield. The results suggest that the relationship between uncontrolled Na uptake of seedling from saline substrate and meteological condition is responsible for saline stress.

Effects of Light Quality and Intensity on the Carbon Dioxide Exchange Rate, Growth, and Morphogenesis of Grafted Pepper Transplants during Healing and Acclimatization

  • Jang, Yoonah;Mun, Boheum;Seo, Taecheol;Lee, Jungu;Oh, Sangseok;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.14-23
    • /
    • 2013
  • This study evaluated the influence of light quality and intensity during healing and acclimatization on the $CO_2$ exchange rate, growth, and morphogenesis of grafted pepper (Capsicum annuum L.) transplants, using a system for the continuous measurement of the $CO_2$ exchange rate. C. annuum L. 'Nokkwang' and 'Tantan' were used as scions and rootstocks, respectively. Before grafting, the transplants were grown for four weeks in a growth chamber with artificial light, where the temperature was set at $25/18^{\circ}C$ (light/dark period) and the light period was 14 hours $d^{-1}$. The grafted pepper transplants were then healed and acclimatized under different light quality conditions using fluorescent lamps (control) and red, blue, and red + blue light-emitting diodes (LEDs). All the transplants were irradiated for 12 hours per day, for six days, at a photosynthetic photon flux (PPF) of 50, 100, or 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The higher PPF levels increased the $CO_2$ exchange rate during the healing and acclimatization. A smaller increase in the $CO_2$ exchange rates was observed in the transplants under red LEDs. At a PPF of 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the $CO_2$ exchange rate of the transplants irradiated with red LEDs was lowest and it was 37% lower than those irradiated with fluorescent lamps. The $CO_2$ exchange rates of transplants irradiated with blue LEDs was the highest and 20% higher than those irradiated under fluorescent lamps. The graft take was not affected by the light quality. The grafted pepper transplants irradiated with red LEDs had a lower SPAD value, leaf dry weight, and dry matter content. The transplants irradiated with blue LEDs had longer shoot length and heavier stem fresh weight than those irradiated with the other treatments. Leaves irradiated with the red LED had the smallest leaf area and showed leaf epinasty. In addition, the palisade and spongy cells of the pepper leaves were dysplastic and exhibited hyperplasia. Grafted pepper transplants treated with red + blue LEDs showed similar growth and morphology to those transplants irradiated with fluorescent lamps. These results suggest that high-quality grafted pepper transplants can be obtained by healing and acclimatization under a combination of blue and red lights at a high PPF level.