• Title/Summary/Keyword: artificial neural network (ANN)

Search Result 1,070, Processing Time 0.031 seconds

GA-optimized Support Vector Regression for an Improved Emotional State Estimation Model

  • Ahn, Hyunchul;Kim, Seongjin;Kim, Jae Kyeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2056-2069
    • /
    • 2014
  • In order to implement interactive and personalized Web services properly, it is necessary to understand the tangible and intangible responses of the users and to recognize their emotional states. Recently, some studies have attempted to build emotional state estimation models based on facial expressions. Most of these studies have applied multiple regression analysis (MRA), artificial neural network (ANN), and support vector regression (SVR) as the prediction algorithm, but the prediction accuracies have been relatively low. In order to improve the prediction performance of the emotion prediction model, we propose a novel SVR model that is optimized using a genetic algorithm (GA). Our proposed algorithm-GASVR-is designed to optimize the kernel parameters and the feature subsets of SVRs in order to predict the levels of two aspects-valence and arousal-of the emotions of the users. In order to validate the usefulness of GASVR, we collected a real-world data set of facial responses and emotional states via a survey. We applied GASVR and other algorithms including MRA, ANN, and conventional SVR to the data set. Finally, we found that GASVR outperformed all of the comparative algorithms in the prediction of the valence and arousal levels.

GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups

  • Kaveh, Ali;Bakhshpoori, Taha;Hamze-Ziabari, Seyed Mahmood
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • In the present study, group method of data handling networks (GMDH) are adopted and evaluated for shear strength prediction of both FRP-reinforced concrete members with and without stirrups. Input parameters considered for the GMDH are altogether 12 influential geometrical and mechanical parameters. Two available and very recently collected comprehensive datasets containing 112 and 175 data samples are used to develop new models for two cases with and without shear reinforcement, respectively. The proposed GMDH models are compared with several codes of practice. An artificial neural network (ANN) model and an ANFIS based model are also developed using the same databases to further assessment of GMDH. The accuracy of the developed models is evaluated by statistical error parameters. The results show that the GMDH outperforms other models and successfully can be used as a practical and effective tool for shear strength prediction of members without stirrups ($R^2=0.94$) and with stirrups ($R^2=0.95$). Furthermore, the relative importance and influence of input parameters in the prediction of shear capacity of reinforced concrete members are evaluated through parametric and sensitivity analyses.

Design of a systolic array for forward-backward propagation of back-propagation algorithm (역전파 알고리즘의 전방향, 역방향 동시 수행을 위한 스스톨릭 배열의 설계)

  • 장명숙;유기영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.49-61
    • /
    • 1996
  • Back-propagation(BP) algorithm needs a lot of time to train the artificial neural network (ANN) to get high accuracy level in classification tasks. So there have been extensive researches to process back-propagation algorithm on parallel processors. This paper prsents a linear systolic array which calculates forward-backward propagation of BP algorithm at the same time using effective space-time transformation and PE structure. First, we analyze data flow of forwared and backward propagations and then, represent the BP algorithm into data dapendency graph (DG) which shows parallelism inherent in the BP algorithm. Next, apply space-time transformation on the DG of ANN is turn with orthogonal direction projection. By doing so, we can get a snakelike systolic array. Also we calculate the interval of input for parallel processing, calculate the indices to make the right datas be used at the right PE when forward and bvackward propagations are processed in the same PE. And then verify the correctness of output when forward and backward propagations are executed at the same time. By doing so, the proposed system maximizes parallelism of BP algorithm, minimizes th enumber of PEs. And it reduces the execution time by 2 times through making idle PEs participate in forward-backward propagation at the same time.

  • PDF

A Self-Tuning Fuzzy Speed Control Method for an Induction Motor (벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법)

  • Kim, Dong-Shin;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

Maximum Torque Control of SynRM with Speed Estimation of ANN (ANN의 속도추정에 의한 SynRM의 최대토크 제어)

  • Ko, Jae-Sub;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Park, Bung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1456-1458
    • /
    • 2005
  • In this paper, a new approach for the synchronous reluctance motor control which ensures producing maximum torque per ampere(MIPA) over the entire field weakening region is presented. In addition, This paper presents a speed sensorless control scheme of SynRM using artificial neural network. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved. The proposed scheme is verified validity through simulation.

  • PDF

A Study on Water Quality Prediction for Climate Change Using Watershed Model in Andong Dam Watershed (유역모형을 이용한 기후변화에 따른 안동댐 유역의 미래 수질 예측)

  • Noh, Hee-Jin;Kim, Young-Do;Kang, Boo-Sik;Yi, Hye-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.945-945
    • /
    • 2012
  • 본 연구에서는 낙동강 수계의 안동댐 유역을 대상지역으로 선정하여 미래 기후변화 시나리오에 따른 댐 유역의 수환경 영향을 예측해 보고자 하였다. 특히 미래기후에 대한 수환경 평가는 기후자료를 입력 값으로 요구하는 강우-유출모형을 이용하거나 유량 이외에 유사, 영양물질과 같은 수질인자를 동시에 모의할 수 있는 유역모형을 이용하여 평가하는 것이 일반적이다. 이를 위해 선행연구로 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 AR4 시나리오의 RCM 자료를 ANN(Artificial Neural Network)기법을 이용하여 안동댐 유역의 총 4개 기상관측소에 대한 과거 20년(1991~2010) 실측자료를 바탕으로 미래 강수 및 습도 그리고 온도에 대해 상세화 하여 미래 기후 시나리오를 생산하였다. 또한 안동댐 유역 단위의 수질을 예측하기 위해 토양과 토지이용 및 토지관리 상태에 따른 수문-수질 모의가 가능한 유역모형인 SWAT(Soil and Water Assessment Tool)을 이용하였다. 과거의 기상자료와 수질자료를 이용하여 유역모델의 검 보정을 실시하였으며 모형의 보정 및 검증결과에 따른 적합성과 상관성을 판단하기 위해 결정계수($R^2$)와 평균제곱근오차(Root Mean Square Error, RMSE)를 사용하였으며, 모형의 효율성 검증으로는 Nash and Sutcliffe(1970)가 제안한 모형효율성계수(NSE)를 사용하였다. 최종적으로 기후 시나리오에 대해서 전망된 지역상세기후를 유역모형의 입력자료로 이용하여 안동댐 유역의 미래수문 및 수질을 예측하고자 하였다.

  • PDF

Development of Sound Quality Evaluation Technique for a Refrigerator under Household Usage Environment (실환경에서의 냉장고 음질 평가 기법 개발)

  • Kim, Sang-Soo;Lee, Eun-Young;Kim, Jung-Rae;Kim, Jong-Yeob;Lee, Dong-Hyun;Oh, Jong-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.427-430
    • /
    • 2005
  • The quality of various noises generated in the refrigerator is one of the important factors in deciding quality of the product. The main focus of sound control design has been shifted from reduction of sound level to improvement of sound duality for customer's preference. Up to date the purpose of noise control is the minimization of noise level. However despite of gradual decrease of noise level, occasionally the perceptional quality of noise has not been improved. In this paper, the relation between subjective and objective evaluation of sound quality has established and sound quality index is developed using ANN for evaluation of refrigerator's noise of both the starting noise and the stable running noise of compressor. To verify the usefulness of the index, the results in this paper have been compared with those surveyed by Consumer Union in USA.

  • PDF

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.

A Study on Development of Water Quality Prediction by Artificial neural network in Watershed of Nam River Using Probability Forecast (확률예보를 이용한 남강유역에서의 수질예측 ANN모형 개발 연구)

  • Jung, Woo Suk;Kim, Young Do;Kang, Boo Sik;Kim, Sung Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.26-26
    • /
    • 2017
  • 우리나라는 하천 및 호수 등 지표수에 대한 수자원 의존도가 매우 높다. 지표수는 태양광에 노출되어 있고, 기온의 영향을 직접 받기 때문에 기후변화에 대해 매우 민감한 수체이다. 기후변화로 인한 이상 저온, 이상 고온, 홍수, 가뭄 등의 자연 현상은 하천, 호수의 물리화학적 및 생태학적 특성을 변화(교란)시키고 있다. 이러한 기상현상에 변동되는 수질특성을 고려하여 기상청 확률기상예보를 구축된 인공신경망 예측모형의 입력인자로 적용하여 수질예보시스템을 개발하고자 하였다. 모형구축은 실제 일어난 기상관측자료와 요인분석을 통해 분류한 수질인자를 반영하여 단위유역별 수질예측을 위한 ANN학습을 실시하였다. 각 단위유역마다 기상요인의 공간적 세밀화 적용을 위해 각각 남강A, 남강B는 산청기상대, 남강C, 남강D는 진주기상대, 남강E는 의령기상대 자료를 이용하였으며, 수질항목은 DO, BOD, COD, TOC, T-P, SS 총 6개로 단위유역 5개에서 총 30개 예측모형 구축을 위한 자료를 수집하였다. 학습된 인공신경망 예측모형에 기상청 확률예보 값을 입력인자로 사용하여 모형평가를 실시하였다. 5개 단위유역 중 상대적으로 유역관리의 시급성을 고려하여 남강댐 하류 단위유역인 남강D, 남강E 인공신경망 모형의 입력자료로 적용하여 평가하였다.

  • PDF

Multi-gene genetic programming for the prediction of the compressive strength of concrete mixtures

  • Ghahremani, Behzad;Rizzo, Piervincenzo
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • In this article, Multi-Gene Genetic Programming (MGGP) is proposed for the estimation of the compressive strength of concrete. MGGP is known to be a powerful algorithm able to find a relationship between certain input space features and a desired output vector. With respect to most conventional machine learning algorithms, which are often used as "black boxes" that do not provide a mathematical formulation of the output-input relationship, MGGP is able to identify a closed-form formula for the input-output relationship. In the study presented in this article, MGPP was used to predict the compressive strength of plain concrete, concrete with fly ash, and concrete with furnace slag. A formula was extracted for each mixture and the performance and the accuracy of the predictions were compared to the results of Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) algorithms, which are conventional and well-established machine learning techniques. The results of the study showed that MGGP can achieve a desirable performance, as the coefficients of determination for plain concrete, concrete with ash, and concrete with slag from the testing phase were equal to 0.928, 0.906, 0.890, respectively. In addition, it was found that MGGP outperforms ELM in all cases and its' accuracy is slightly less than ANN's accuracy. However, MGGP models are practical and easy-to-use since they extract closed-form formulas that may be implemented and used for the prediction of compressive strength.