• Title/Summary/Keyword: artificial neural network (ANN)

Search Result 1,070, Processing Time 0.026 seconds

Steady State and Dynamic Response of a State Space Observer Based PMSM Drive with Different Controllers

  • Gaur, Prerna;Singh, Bhim;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.280-290
    • /
    • 2008
  • This paper deals with an investigation and evaluation of the performance of a state observer based Permanent Magnet Synchronous Motor (PMSM) drive controlled by PI (Proportional Integral), PID (Proportional Integral and Derivative), SMC (sliding mode control), ANN (Artificial neural network) and FLC (Fuzzy logic) speed controllers. A detailed study of the steady state and dynamic performance of estimated speed and angle is given to demonstrate the capability of the controllers.

Development of Machine Learning Ensemble Model using Artificial Intelligence (인공지능을 활용한 기계학습 앙상블 모델 개발)

  • Lee, K.W.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.211-217
    • /
    • 2021
  • To predict mechanical properties of secondary hardening martensitic steels, a machine learning ensemble model was established. Based on ANN(Artificial Neural Network) architecture, some kinds of methods was considered to optimize the model. In particular, interaction features, which can reflect interactions between chemical compositions and processing conditions of real alloy system, was considered by means of feature engineering, and then K-Fold cross validation coupled with bagging ensemble were investigated to reduce R2_score and a factor indicating average learning errors owing to biased experimental database.

An ANN-based gesture recognition algorithm for smart-home applications

  • Huu, Phat Nguyen;Minh, Quang Tran;The, Hoang Lai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1967-1983
    • /
    • 2020
  • The goal of this paper is to analyze and build an algorithm to recognize hand gestures applying to smart home applications. The proposed algorithm uses image processing techniques combing with artificial neural network (ANN) approaches to help users interact with computers by common gestures. We use five types of gestures, namely those for Stop, Forward, Backward, Turn Left, and Turn Right. Users will control devices through a camera connected to computers. The algorithm will analyze gestures and take actions to perform appropriate action according to users requests via their gestures. The results show that the average accuracy of proposal algorithm is 92.6 percent for images and more than 91 percent for video, which both satisfy performance requirements for real-world application, specifically for smart home services. The processing time is approximately 0.098 second with 10 frames/sec datasets. However, accuracy rate still depends on the number of training images (video) and their resolution.

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Stroke Disease Identification System by using Machine Learning Algorithm

  • K.Veena Kumari ;K. Siva Kumar ;M.Sreelatha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.183-189
    • /
    • 2023
  • A stroke is a medical disease where a blood vessel in the brain ruptures, causes damage to the brain. If the flow of blood and different nutrients to the brain is intermittent, symptoms may occur. Stroke is other reason for loss of life and widespread disorder. The prevalence of stroke is high in growing countries, with ischemic stroke being the high usual category. Many of the forewarning signs of stroke can be recognized the seriousness of a stroke can be reduced. Most of the earlier stroke detections and prediction models uses image examination tools like CT (Computed Tomography) scan or MRI (Magnetic Resonance Imaging) which are costly and difficult to use for actual-time recognition. Machine learning (ML) is a part of artificial intelligence (AI) that makes software applications to gain the exact accuracy to predict the end results not having to be directly involved to get the work done. In recent times ML algorithms have gained lot of attention due to their accurate results in medical fields. Hence in this work, Stroke disease identification system by using Machine Learning algorithm is presented. The ML algorithm used in this work is Artificial Neural Network (ANN). The result analysis of presented ML algorithm is compared with different ML algorithms. The performance of the presented approach is compared to find the better algorithm for stroke identification.

An Integrated Artificial Neural Network-based Precipitation Revision Model

  • Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1690-1707
    • /
    • 2021
  • Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.

Classification of Schizophrenia Using an ANN and Wavelet Coefficients of Multichannel EEG (다채널 뇌파의 웨이블릿 계수와 신경망을 이용한 정신분열증의 판별)

  • 정주영;박일용;강병조;조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • In this paper, a method of discriminating EEG for diagnoses of mental activity is proposed. The proposed method for classification of schizophrenia and normal EEG is based on the wavelet transform and the artificial neural network. The wavelet coefficients of $\alpha$ band, $\beta$ band, $\theta$ band, and $\delta$ band are obtained using the wavelet transform. The magnitude, mean, and variance of wavelet coefficients for each EEG band are applied to the input data of the system's ANN. The architecture of the ANN s a four layered feedforward network with two hidden layer which implements the error back propagation learning algorithm. Through the classification of schizophrenia composed of 19 ANNs corresponding to 19 channels, the classifying system show that it can classify the 100% of the normal EEG group and the 86.67% of the schizophrenia EEG group.

Stealthy Behavior Simulations Based on Cognitive Data (인지 데이터 기반의 스텔스 행동 시뮬레이션)

  • Choi, Taeyeong;Na, Hyeon-Suk
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.27-40
    • /
    • 2016
  • Predicting stealthy behaviors plays an important role in designing stealth games. It is, however, difficult to automate this task because human players interact with dynamic environments in real time. In this paper, we present a reinforcement learning (RL) method for simulating stealthy movements in dynamic environments, in which an integrated model of Q-learning with Artificial Neural Networks (ANN) is exploited as an action classifier. Experiment results show that our simulation agent responds sensitively to dynamic situations and thus is useful for game level designer to determine various parameters for game.

ANNs on Co-occurrence Matrices for Mobile Malware Detection

  • Xiao, Xi;Wang, Zhenlong;Li, Qi;Li, Qing;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2736-2754
    • /
    • 2015
  • Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.