• Title/Summary/Keyword: artificial neural network(ANN)

Search Result 1,052, Processing Time 0.027 seconds

Hybrid Technique for Locating and Sizing of Renewable Energy Resources in Power System

  • Durairasan, M.;Kalaiselvan, A.;Sait, H. Habeebullah
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.161-172
    • /
    • 2017
  • In the paper, a hybrid technique is proposed for detecting the location and capacity of distributed generation (DG) sources like wind and photovoltaic (PV) in power system. The novelty of the proposed method is the combined performance of both the Biography Based Optimization (BBO) and Particle Swarm Optimization (PSO) techniques. The mentioned techniques are the optimization techniques, which are used for optimizing the optimum location and capacity of the DG sources for radial distribution network. Initially, the Artificial Neural Network (ANN) is applied to obtain the available capacity of DG sources like wind and PV for 24 hours. The BBO algorithm requires radial distribution network voltage, real and power loss for determining the optimum location and capacity of the DG. Here, the BBO input parameters are classified into sub parameters and allowed as the PSO algorithm optimization process. The PSO synthesis the problem and develops the sub solution with the help of sub parameters. The BBO migration and mutation process is applied for the sub solution of PSO for identifying the optimum location and capacity of DG. For the analysis of the proposed method, the test case is considered. The IEEE standard bench mark 33 bus system is utilized for analyzing the effectiveness of the proposed method. Then the proposed technique is implemented in the MATLAB/simulink platform and the effectiveness is analyzed by comparing it with the BBO and PSO techniques. The comparison results demonstrate the superiority of the proposed approach and confirm its potential to solve the problem.

Development of the Efficiency-Evaluation Model for the Mechanism of CO2 Sequestration in a Deep Saline Aquifer (심부 대염수층 CO2 격리 메커니즘에 관한 효율성 평가 모델 개발)

  • Kim, Jung-Gyun;Lee, Young-Soo;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.55-66
    • /
    • 2012
  • The practical way to minimize the greenhouse gas is to reduce the emission of carbon dioxide. For this reason, CCS(Carbon Capture and Storage) technology, which could reduce carbon dioxide emission, has risen as a realistic alternative in recent years. In addition, the researcher is recently working into ways of applying CCS technologies with deep saline aquifer. In this study, the evaluation model on the feasibility of $CO_2$ sequestration in the deep saline aquifer using ANN(Artificial Neural Network) was developed. In order to develop the efficiency-evaluation model, basic model was created in the deep saline aquifer and sensitivity analysis was performed for the aquifer characteristics by utilizing the commercial simulator of GEM. Based on the sensitivity analysis, the factors and ranges affecting $CO_2$ sequestration in the deep saline aquifer were chosen. The result from ANN training scenario were confirmed $CO_2$ sequestration by solubility trapping and residual trapping mechanism. The result from ANN model evaluation indicated there is the increase of correlation coefficient up to 0.99. It has been confirmed that the developed model can be utilized in feasibility of $CO_2$ sequestration at deep saline aquifer.

Fiber Classification and Detection Technique Proposed for Applying on the PVA-ECC Sectional Image (PVA-ECC단면 이미지의 섬유 분류 및 검출 기법)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.513-522
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC (Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device (CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

Integrating Discrete Wavelet Transform and Neural Networks for Prostate Cancer Detection Using Proteomic Data

  • Hwang, Grace J.;Huang, Chuan-Ching;Chen, Ta Jen;Yue, Jack C.;Ivan Chang, Yuan-Chin;Adam, Bao-Ling
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.319-324
    • /
    • 2005
  • An integrated approach for prostate cancer detection using proteomic data is presented. Due to the high-dimensional feature of proteomic data, the discrete wavelet transform (DWT) is used in the first-stage for data reduction as well as noise removal. After the process of DWT, the dimensionality is reduced from 43,556 to 1,599. Thus, each sample of proteomic data can be represented by 1599 wavelet coefficients. In the second stage, a voting method is used to select a common set of wavelet coefficients for all samples together. This produces a 987-dimension subspace of wavelet coefficients. In the third stage, the Autoassociator algorithm reduces the dimensionality from 987 to 400. Finally, the artificial neural network (ANN) is applied on the 400-dimension space for prostate cancer detection. The integrated approach is examined on 9 categories of 2-class experiments, and also 3- and 4-class experiments. All of the experiments were run 10 times of ten-fold cross-validation (i. e. 10 partitions with 100 runs). For 9 categories of 2-class experiments, the average testing accuracies are between 81% and 96%, and the average testing accuracies of 3- and 4-way classifications are 85% and 84%, respectively. The integrated approach achieves exciting results for the early detection and diagnosis of prostate cancer.

  • PDF

(Visualization Tool of searching process of Particle Swarm Optimization) (PSO(Particle Swarm Optinization)탐색과정의 가시화 툴)

  • 유명련;김현철
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.35-41
    • /
    • 2002
  • To solve the large scale optimization problem approximately, various approaches have been introduced. They are mainly based on recent research advancement of simulations for evolutions, flocking, annealing, and interactions among organisms on artificial environments. The typical ones are simulated annealing(SA), artificial neural network(ANN), genetic algorithms(GA), tabu search(TS), etc. Recently the particle swarm optimization(PSO) has been introduced. The PSO simulates the process of birds flocking or fish schooling for food, as with the information of each agent Is share by other agents. The PSO technique has been applied to various optimization problems of which variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process particle swarm optimization(PSO) algorithm. The proposed tool is effective for understanding the searching process of PSO method and educational for students.

  • PDF

Mobbing Value Algorithm for Improvement Victims Management - based on Social Network in Military - (집단 따돌림 희생자 관리 개선을 위한 모빙 지수 알고리즘 - 소셜 네트워크 기반 군 조직을 중심으로 -)

  • Kim, Guk-Jin;Park, Gun-Woo;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.1-12
    • /
    • 2009
  • Mobbing is going the rounds through a society rapidly and Military is not exception. Because mobbing of military is expressed not only psychology exclusion that is mobbing pattern of adult society but also sometimes psychologic and physical mobbing, is possible to join serious military discipline like a suicide and outrageous behavior. Specially military try to protect occurrence of victims that is public service through various rules and management plan but victims is going on happen. It means importance of grasp not only current mobbing victims but also potential mobbing victims better than preparation of various rules and management plans. Therefore this paper extracts seven factors and fifty attributes that are related to this matter mobbing. Next, by using Gunwoo's Social Network Service that is made for oneself and expressing extracting factors as '1' if they are related me or not '0'. And apply similarity function(Dice's coefficient) to attributes summation included in factors to calculate similarity between the users. Third, calculate optimizing weight choosing factors included attributes by applying neural network algorithm of SPSS Clementine and propose Mobbing Value(MV) Algorithm through this total summation. Finally through this algorithm which will contribute to efficient personnel management, we can grasp mobbing victims and tentative mobbing victims.

A Study on the Future Traffic Volume Estimation for Kwangyang Port Using The Consideration Factors of Marine Traffic Engineering (해상교통공학적 고려 요소를 이용한 광양항의 장래교통량 예측에 대한 연구)

  • Park, Young-Soo;Kim, Jong-Soo;Park, Jin-Soo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.447-454
    • /
    • 2007
  • To assess the port development and maritime traffic environment, the future traffic volume has been estimated using the number of inbound and outbound vessel for a specific port. The estimation of future traffic volume should be considered as an important factor to establish the degree of fairway congestion, the determination of fairway width and the operational role. Until now, the number of in and out vessel for the port has been only estimated mainly, but the type and size of inbound and outbound ships are different depending on the port's characteristics. So, it is difficult to estimate the future traffic volume using the change of only one item. This paper calculates the future traffic volume using the marine traffic characteristic factors as the number of coastal ship and ocean-going ship, the size of ship and the change of cargo volume per a ship etc. And it compared with the results of Artificial Neural Network(ANN) for accurate identification of nonlinear system.

Prediction of multipurpose dam inflow using deep learning (딥러닝을 활용한 다목적댐 유입량 예측)

  • Mok, Ji-Yoon;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, Artificial Neural Network receives attention as a data prediction method. Among these, a Long Shot-term Memory (LSTM) model specialized for time-series data prediction was utilized as a prediction method of hydrological time series data. In this study, the LSTM model was constructed utilizing deep running open source library TensorFlow which provided by Google, to predict inflows of multipurpose dams. We predicted the inflow of the Yongdam Multipurpose Dam which is located in the upper stream of the Geumgang. The hourly flow data of Yongdam Dam from 2006 to 2018 provided by WAMIS was used as the analysis data. Predictive analysis was performed under various of variable condition in order to compare and analyze the prediction accuracy according to four learning parameters of the LSTM model. Root mean square error (RMSE), Mean absolute error (MAE) and Volume error (VE) were calculated and evaluated its accuracy through comparing the predicted and observed inflows. We found that all the models had lower accuracy at high inflow rate and hourly precipitation data (2006~2018) of Yongdam Dam utilized as additional input variables to solve this problem. When the data of rainfall and inflow were utilized together, it was found that the accuracy of the prediction for the high flow rate is improved.

Development of groundwater level monitoring and forecasting technique for drought analysis (II) - Groundwater drought forecasting Using SPI, SGI and ANN (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(II) - 표준강수지수, 표준지하수지수 및 인공신경망을 이용한 지하수 가뭄 예측)

  • Lee, Jeongju;Kang, Shinuk;Kim, Taeho;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1021-1029
    • /
    • 2018
  • A primary objective of this study is to develop a drought forecasting technique based on groundwater which can be exploit for water supply under drought stress. For this purpose, we explored the lagged relationships between regionalized SGI (standardized groundwater level index) and SPI (standardized precipitation index) in view of the drought propagation. A regional prediction model was constructed using a NARX (nonlinear autoregressive exogenous) artificial neural network model which can effectively capture nonlinear relationships with the lagged independent variable. During the training phase, model performance in terms of correlation coefficient was found to be satisfactory with the correlation coefficient over 0.7. Moreover, the model performance was described by root mean squared error (RMSE). It can be concluded that the proposed approach is able to provide a reliable SGI forecasts along with rainfall forecasts provided by the Korea Meteorological Administration.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.