• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.037 seconds

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

An Adaptive Recommendation System for Personalized Stock Trading Advice Using Artificial Neural Networks

  • Kaensar, Chayaporn;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.931-934
    • /
    • 2005
  • This paper describes an adaptive recommendation system that provides real-time personalized trading advice to the investors based on their profiles and trading information environment. A proposed system integrates Stochastic technical analysis and artificial neural network that incorporates an adaptive user modeling. The user model is constructed and updated based on initial user profile and recorded user interactions with the system. The information presented to each individual user is also tailor-made to fit the user's behavior and preference. A system prototype was implemented in JAVA. Experiments used to evaluate the system's performance were done on both human subjects and synthetic users. The results show our proposed system is able to rapidly learn to provide appropriate advice to different types of users.

  • PDF

Assessment of Factors affecting Steep-slope Failure using Artificial Neural Network (인공신경망을 활용한 급경사지 붕괴유발인자 평가)

  • Song, Young-Karb;Oh, Jeong-Rim;Park, Dug-Keun;Son, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1342-1348
    • /
    • 2010
  • Currently available evaluation checklists are developed for specific purposed using different parameters and items determined by different weighting factors. Those items with different weighting are sometimes said that they are based on the engineering judgement and leap of faith and, therefore, there is a limitation to adapt those checklists for slope-stability evaluation in the field. This study reviews factors affecting slope stability, analyze the relationship between those factors and slope failures using artificial neural network, and proposed a slope-stability evaluation model for adequate weighting for the factors.

  • PDF

Prediction of Tunnel Behavior Using Artificial Neural Network (터널거동 평가에서의 인공신경망 활용기법 연구)

  • Yoo, Chung-Sik;Kim, Joo-Mi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1324-1334
    • /
    • 2005
  • This study investigated the applicability of the Artificial Neural Network (ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.

  • PDF

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF

An Artificial Life Model Based on Neural Networks for Navigation of Multiple Autonomous Mobile Robots in the Dynamic Environment (동적 환경에서 자율 이동 로봇군의 이동을 위한 신경 회로망 기반 인공 생명 모델)

  • Min, Seok-Ki;Kang, Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.180-188
    • /
    • 1999
  • The objective of this paper is, based upon the principles of artificial life, to induce emergent behaviors of multiple autonomous mobile robots which complex global intelligence form from simple local interactions. Here, we propose an architecture of neural network learning with reinforcement signals which perceives the neighborhood information and decides the direction and the velocity of movement as mobile robots navigate in a group. As the results of the simulations, the optimum weight is obtained in real time, which not only prevent the collisions between agents and obstacles in the dynamic environment, but also have the mobile robots move and keep in various patterns.

  • PDF

Bidirectional Artificial Neural Networks for Mobile-Phone Fraud Detection

  • Krenker, Andrej;Volk, Mojca;Sedlar, Urban;Bester, Janez;Kos, Andrej
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.92-94
    • /
    • 2009
  • We propose a system for mobile-phone fraud detection based on a bidirectional artificial neural network (bi-ANN). The key advantage of such a system is the ability to detect fraud not only by offline processing of call detail records (CDR), but also in real time. The core of the system is a bi-ANN that predicts the behavior of individual mobile-phone users. We determined that the bi-ANN is capable of predicting complex time series (Call_Duration parameter) that are stored in the CDR.

  • PDF

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

A Study on the New Parameter Estimation of Induction Motor (새로운 유도전동기의 파라미터 추정에 관한 연구)

  • Lee, D.G.;Oh, S.G.;Kim, J.S.;Kim, G.H.;Kim, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.47-48
    • /
    • 2005
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

  • PDF

The usefulness of overfitting via artificial neural networks for non-stationary time series

  • Ahn Jae-Joon;Oh Kyong-Joo;Kim Tae-Yoon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1221-1226
    • /
    • 2006
  • The use of Artificial Neural Networks (ANN) has received increasing attention in the analysis and prediction of financial time series. Stationarity of the observed financial time series is the basic underlying assumption in the practical application of ANN on financial time series. In this paper, we will investigate whether it is feasible to relax the stationarity condition to non-stationary time series. Our result discusses the range of complexities caused by non-stationary behavior and finds that overfitting by ANN could be useful in the analysis of such non-stationary complex financial time series.

  • PDF