• 제목/요약/키워드: artificial joint

검색결과 275건 처리시간 0.028초

하퇴절단자용 단축식 발과 스포츠용 에너지 저장형 발 보행 특성 비교연구 (A Comparative Study of Gait Characteristics between Single Axis Foot and Energy Storing Foot for Sports in Trans-tibial Amputee)

  • 장윤희;배태수;김신기;문무성
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.126-132
    • /
    • 2009
  • This study examined the differences in spatio-temporal parameters, joint angle, ground reaction force (GRF), and joint power according to the changes of gait speed for trans-tibial amputees to investigate the features of the energy-storing foot for sports. The subjects walked at normal speed and at fast speed, wearing a single-axis type foot (Korec) and an energy-storing foot for sports (Renegade) respectively. The results showed that Renegade yielded faster gait speed as well as more symmetric gait pattern, compared to Korec. However, as gait speed was increased, there was no significant difference in kinematics, ground reaction force, and joint power between two artificial foots. This was similar to the results from previous studies regarding the energy-storing foot, where the walking velocity and gait symmetry have been improved. Nevertheless, the result of this study differed from the previous ones which reported that joint angle, joint power, and GRF increased as the gait speed increased except spatio-temporal parameters.

슬관절 전치환술용 3차원 시술변수 추출 시스템 (A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters)

  • 전용태
    • 한국CDE학회논문집
    • /
    • 제16권5호
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

하반신 마비환자를 위한 동력보행보조기의 퍼지제어 기법 개발 (Development of Fuzzy Control Method Powered Gait Orthosis for Paraplegic Patients)

  • 강성재;류제청;김규석;김영호;문무성
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.163-168
    • /
    • 2009
  • In this study, we would be developed the fuzzy controlled PGO that controlled the flexion and the extension of each PGO's hip joint using the bio-signal and FSR sensor. The PGO driving system is to couple the right and left sides of the orthosis by specially designed hip joints and pelvic section. This driving system consists of the orthosis, sensor, control system. An air supply system of muscle is composed of an air compressor, 2-way solenoid valve (MAC, USA), accumulator, pressure sensor. Role of this system provide air muscle with the compressed air at hip joint constantly. According to output signal of EMG sensor and foot sensor, air muscles and assists the flexion of hip joint during PGO gait. As a results, the maximum hip flexion angles of RGO's gait and PGO's gait were about $16^{\circ}\;and\;57^{\circ}$ respectively. The maximum angle of flexion/extention in hip joint of the patients during RGO's gait are smaller than normal gait, because of the step length of them shoes a little bit. But maximum angle of flexion/extention in hip joint of the patients during PGO's gait are larger than normal gait.

인공디스크에 대한 생체역학적 분석 (Biomechanical Analysis of the Artificial Discs)

  • 김영은;윤상석;정상기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.907-910
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical change with its implantation was rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Two models implanted with artificial discs, SB $Charit\acute{e}$ or Prodisc, via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments and facet joint, and the stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400 N were compared. The implanted model showed increased flexion-extension range of motion and increased force in the vertically oriented ligaments, such as ligamentum flavum, supraspinous ligament and interspinous ligament. The increase of facet contact force on extension were greater in implanted models. The incresed stress distribution on vertebral endplate for implanted cases indicated that additinal bone growth around vertebral body and this is matched well with clinical observation. With axial rotation moment, relatively less axial rotation were observed in SB $Charit\acute{e}$ model than in ProDisc model.

  • PDF

인공추간판 적용 시 인접 운동 분절에서의 변화 분석 (Analysis of biomechanical change of adjacent motion segment of the lumbar spine with an implanted artificial disc)

  • 김영은;윤상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.244-247
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain and used clinically, biomechanical change with its implantation seldom studied. To evaluate the effect of artificial disc implantation on the biomechanics of lumbar spinal unit, nonlinear three-dimensional finite element model of L1-L5, S1 was developed and strain and stress of vertebral body and surrounding spinal ligaments were predicted. Intact osteoligamentous L1-L5, S1 model was created with 1-mm CT scan of a volunteer and known material property of each element were applied. This model also includes the effect of local muscles which was modeled with pre-strained spring elements. The intact model was validated with reported biomechanical data. Two models implanted with artificial discs, SB Charite or Prodisc, at L4/5 via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments, facet joint contact force with $2\sim12$ Nm flexion-extension moment.

  • PDF

디지털 유지관리를 위한 데이터 기반 교량 신축이음 유간 평가 (Evaluation of Data-based Expansion Joint-gap for Digital Maintenance )

  • 박종호;신유성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권2호
    • /
    • pp.1-8
    • /
    • 2024
  • 신축이음 장치는 교량 상부구조의 신축량을 수용할 목적으로 설치되며 공용중 충분한 유간을 확보하여야 한다. 안전점검 및 정밀안전진단 수행 시 유간부족 및 유간과다에 대한 손상을 명시하고 있으나, 유간에 따른 교량의 이상 거동을 판별하기 위한 기준이 미흡하다. 본 연구에서는 동일 신축이음부의 유간 데이터를 지속적으로 추적하여 데이터 기반의 유지관리 방안을 제시하였다. 689개소의 신축이음 장치에서 계절별 영향을 고려하여 총 2,756개의 유간 데이터를 수집하였다. 동일 위치에서 4개 이상의 데이터를 통해 신축거동을 분석할 수 있는 유간 변화 평가 방안을 마련하였으며, 신축거동에 영향을 미치는 인자를 분류하고 딥러닝과 설명 가능한 AI를 통해 각 인자의 영향도를 분석하였다. 유간 평가 그래프를 통해 교량 상부구조의 이상 거동을 협착 및 기능 고장으로 분류하였다. 이론적 거동을 보이고 있다하더라도 협착 가능성이 나타날 수 있는 사례 및 하절기 협착 가능성이 매우 높게 나타난 사례가 도출되었다. 협착 가능성은 낮으나 교량 상부구조에 기능상 문제점이 발생했을 가능성이 높은 사례와 시공오류에 따라 신축이음 장치가 재시공된 사례도 도출되었다. 딥러닝 및 설명 가능한 AI를 통한 영향인자 분석은 기존의 신축유간 계산식 및 교량 설계에 따른 결과로 설명 가능하여 신뢰 가능한 수준으로 판단되어 추후 모델의 개선을 통해 유지관리를 위한 가이드를 제시할 수 있을 것이라 판단된다.

Nondestructive Evaluation for Artificial Degraded Stainless 316 Steel by Time-Frequency Analysis Method

  • Nam, Ki-Woo;Kim, Young-Un
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.87-92
    • /
    • 2001
  • In this studies, joint time-frequency analysis techniques were applied to analyze ultrasonic signals in the degraded austenitic 316 stainless steels, to study the evolution of damage in these materials. It was demonstrated that the nonstationary characteristics of ultrasonic signals could be analyzed effectively by these methods. The WVD was more effective for analyzing the attenuation and frequency characteristics of the degraded materials through ultrasonic. It is indicated that the joint time-frequency analysis, WVD method, should also be useful in evaluating various damages and defects in structural members.

  • PDF

Tracing Algorithm for Intelligent Snake-like Robot System

  • Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.486-491
    • /
    • 2005
  • There come various types of robot with researches for mobile robot. This paper introduces the multi-joint snake robot having 16 degree of freedom and composing of eight-axis. The biological snake robot uses the forward movement friction and the proposed artificial snake robot uses the un-powered wheel instead of the body of snake. To determine the enable joint angle of each joint, the controller inputs are considered such as color and distance using PC Camera and ultra-sonic sensor module, respectively. The movement method of snake robot is sequential moving from head to tail through body. The target for movement direction is decided by a certain article be displayed in the PC Camera. In moving toward that target, if there is any obstacle then the snake robot can avoid by itself. In this paper, we show the method of snake robot for tracing the target with experiment.

  • PDF

Increasing Secrecy Capacity via Joint Design of Cooperative Beamforming and Jamming

  • Guan, Xinrong;Cai, Yueming;Yang, Weiwei;Cheng, Yunpeng;Hu, Junquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1041-1062
    • /
    • 2012
  • In this paper, we propose a hybrid cooperative scheme to improve the secrecy rate for a cooperative network in presence of multiple relays. Each relay node transmits the mixed signal consisting of weighted source signal and intentional noise. The problem of power allocation, the joint design of beamforming and jamming weights are investigated, and an iterative scheme is proposed. It is demonstrated by the numerical results that the proposed hybrid scheme further improves secrecy rate, as compared to traditional cooperative schemes.

나선축 개념을 이용한 팔꿈치 관절의 3차원 회전축 측정과 측정 결과를 반영한 인체 팔 모델의 개발 (Determination of the Elbow Transverse Joint Using the Helical Axis Concept and its Application to the Development of a Kinematic Arm Model)

  • 우범영;정의승;윤명환
    • 대한산업공학회지
    • /
    • 제26권1호
    • /
    • pp.73-80
    • /
    • 2000
  • To determine the exact direction and location of the human joint in motion is crucial in developing a more accurate human model and producing a more fitting artificial joint. There have been several reports on the biomechanical analysis of the joint to determine the anatomy and movement of joints. However, all the previous researches were made in vitro study, that is, they investigated the passive movement of the joint from cadavers and the suggested location of the joint axis was difficult to make practical applications due to the lack of the direction of joint axis. Also, in many biomechanical models, each joint axis is assumed to lie horizontally or vertically to the adjacent links. Such an assumption causes inherent inaccuracy. In this study, the direction and location of the transverse elbow axis was obtained with respect to the global coordinate system whose origin is on the lateral epicondyle of the humerus. The suggested result based on the global coordinate system lying on the external landmark will be helpful to understand the information of the axis and to make an application. From the experiments conducted for five subjects, the direction and location of the elbow transverse joint was determined for each subject by the helical axis method. A statistical validation was also performed to confirm the result. Finally, the result was applied to develop a simple elbow model which is a part of the kinematic arm model. The simple elbow movement model was developed to validate the significance of the result and the kinematic arm model was able to describe the geometry of any complex linkage system. As a result, the errors incurred from the proposed model were significantly reduced when compared to the ones from the previous approach.

  • PDF