• Title/Summary/Keyword: artificial intelligence-based models

Search Result 553, Processing Time 0.025 seconds

Research on Driving Pattern Analysis Techniques Using Contrastive Learning Methods (대조학습 방법을 이용한 주행패턴 분석 기법 연구)

  • Hoe Jun Jeong;Seung Ha Kim;Joon Hee Kim;Jang Woo Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.182-196
    • /
    • 2024
  • This study introduces driving pattern analysis and change detection methods using smartphone sensors, based on contrastive learning. These methods characterize driving patterns without labeled data, allowing accurate classification with minimal labeling. In addition, they are robust to domain changes, such as different vehicle types. The study also examined the applicability of these methods to smartphones by comparing them with six lightweight deep-learning models. This comparison supported the development of smartphone-based driving pattern analysis and assistance systems, utilizing smartphone sensors and contrastive learning to enhance driving safety and efficiency while reducing the need for extensive labeled data. This research offers a promising avenue for addressing contemporary transportation challenges and advancing intelligent transportation systems.

Transfer Learning-based Generated Synthetic Images Identification Model (전이 학습 기반의 생성 이미지 판별 모델 설계)

  • Chaewon Kim;Sungyeon Yoon;Myeongeun Han;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.465-470
    • /
    • 2024
  • The advancement of AI-based image generation technology has resulted in the creation of various images, emphasizing the need for technology capable of accurately discerning them. The amount of generated image data is limited, and to achieve high performance with a limited dataset, this study proposes a model for discriminating generated images using transfer learning. Applying pre-trained models from the ImageNet dataset directly to the CIFAKE input dataset, we reduce training time cost followed by adding three hidden layers and one output layer to fine-tune the model. The modeling results revealed an improvement in the performance of the model when adjusting the final layer. Using transfer learning and then adjusting layers close to the output layer, small image data-related accuracy issues can be reduced and generated images can be classified.

Deep learning-based clothing attribute classification using fashion image data (패션 이미지 데이터를 활용한 딥러닝 기반의 의류속성 분류)

  • Hye Seon Jeong;So Young Lee;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • Attributes such as material, color, and fit in fashion images are important factors for consumers to purchase clothing. However, the process of classifying clothing attributes requires a large amount of manpower and is inconsistent because it relies on the subjective judgment of human operators. To alleviate this problem, there is a need for research that utilizes artificial intelligence to classify clothing attributes in fashion images. Previous studies have mainly focused on classifying clothing attributes for either tops or bottoms, so there is a limitation that the attributes of both tops and bottoms cannot be identified simultaneously in the case of full-body fashion images. In this study, we propose a deep learning model that can distinguish between tops and bottoms in fashion images and classify the category of each item and the attributes of the clothing material. The deep learning models ResNet and EfficientNet were used in this study, and the dataset used for training was 1,002,718 fashion images and 125 labels including clothing categories and material properties. Based on the weighted F1-Score, ResNet is 0.800 and EfficientNet is 0.781, with ResNet showing better performance.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

A Study on Model for Drivable Area Segmentation based on Deep Learning (딥러닝 기반의 주행가능 영역 추출 모델에 관한 연구)

  • Jeon, Hyo-jin;Cho, Soo-sun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.105-111
    • /
    • 2019
  • Core technologies that lead the Fourth Industrial Revolution era, such as artificial intelligence, big data, and autonomous driving, are implemented and serviced through the rapid development of computing power and hyper-connected networks based on the Internet of Things. In this paper, we implement two different models for drivable area segmentation in various environment, and propose a better model by comparing the results. The models for drivable area segmentation are using DeepLab V3+ and Mask R-CNN, which have great performances in the field of image segmentation and are used in many studies in autonomous driving technology. For driving information in various environment, we use BDD dataset which provides driving videos and images in various weather conditions and day&night time. The result of two different models shows that Mask R-CNN has higher performance with 68.33% IoU than DeepLab V3+ with 48.97% IoU. In addition, the result of visual inspection of drivable area segmentation on driving image, the accuracy of Mask R-CNN is 83% and DeepLab V3+ is 69%. It indicates Mask R-CNN is more efficient than DeepLab V3+ in drivable area segmentation.

Development of Graph based Deep Learning methods for Enhancing the Semantic Integrity of Spaces in BIM Models (BIM 모델 내 공간의 시멘틱 무결성 검증을 위한 그래프 기반 딥러닝 모델 구축에 관한 연구)

  • Lee, Wonbok;Kim, Sihyun;Yu, Youngsu;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.45-55
    • /
    • 2022
  • BIM models allow building spaces to be instantiated and recognized as unique objects independently of model elements. These instantiated spaces provide the required semantics that can be leveraged for building code checking, energy analysis, and evacuation route analysis. However, theses spaces or rooms need to be designated manually, which in practice, lead to errors and omissions. Thus, most BIM models today does not guarantee the semantic integrity of space designations, limiting their potential applicability. Recent studies have explored ways to automate space allocation in BIM models using artificial intelligence algorithms, but they are limited in their scope and relatively low classification accuracy. This study explored the use of Graph Convolutional Networks, an algorithm exclusively tailored for graph data structures. The goal was to utilize not only geometry information but also the semantic relational data between spaces and elements in the BIM model. Results of the study confirmed that the accuracy was improved by about 8% compared to algorithms that only used geometric distinctions of the individual spaces.