• Title/Summary/Keyword: artificial fish swarm algorithm

Search Result 4, Processing Time 0.019 seconds

Optimal sensor placement for health monitoring of high-rise structure based on collaborative-climb monkey algorithm

  • Yi, Ting-Hua;Zhou, Guang-Dong;Li, Hong-Nan;Zhang, Xu-Dong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.305-317
    • /
    • 2015
  • Optimal sensor placement (OSP) is an integral component in the design of an effective structural health monitoring (SHM) system. This paper describes the implementation of a novel collaborative-climb monkey algorithm (CMA), which combines the artificial fish swarm algorithm (AFSA) with the monkey algorithm (MA), as a strategy for the optimal placement of a predefined number of sensors. Different from the original MA, the dual-structure coding method is adopted for the representation of design variables. The collaborative-climb process that can make the full use of the monkeys' experiences to guide the movement is proposed and incorporated in the CMA to speed up the search efficiency of the algorithm. The effectiveness of the proposed algorithm is demonstrated by a numerical example with a high-rise structure. The results show that the proposed CMA algorithm can provide a robust design for sensor networks, which exhibits superior convergence characteristics when compared to the original MA using the dual-structure coding method.

(Visualization Tool of searching process of Particle Swarm Optimization) (PSO(Particle Swarm Optinization)탐색과정의 가시화 툴)

  • 유명련;김현철
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.35-41
    • /
    • 2002
  • To solve the large scale optimization problem approximately, various approaches have been introduced. They are mainly based on recent research advancement of simulations for evolutions, flocking, annealing, and interactions among organisms on artificial environments. The typical ones are simulated annealing(SA), artificial neural network(ANN), genetic algorithms(GA), tabu search(TS), etc. Recently the particle swarm optimization(PSO) has been introduced. The PSO simulates the process of birds flocking or fish schooling for food, as with the information of each agent Is share by other agents. The PSO technique has been applied to various optimization problems of which variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process particle swarm optimization(PSO) algorithm. The proposed tool is effective for understanding the searching process of PSO method and educational for students.

  • PDF

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.