• Title/Summary/Keyword: artificial cross

Search Result 384, Processing Time 0.028 seconds

Support vector quantile regression for autoregressive data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1539-1547
    • /
    • 2014
  • In this paper we apply the autoregressive process to the nonlinear quantile regression in order to infer nonlinear quantile regression models for the autocorrelated data. We propose a kernel method for the autoregressive data which estimates the nonlinear quantile regression function by kernel machines. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of quantile regression function in the presence of autocorrelation between data.

An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression (인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법)

  • Moon, Jihoon;Jun, Sanghoon;Park, Jinwoong;Choi, Young-Hwan;Hwang, Eenjun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.293-302
    • /
    • 2016
  • Since the electricity is produced and consumed simultaneously, predicting the electric load and securing affordable electric power are necessary for reliable electric power supply. In particular, a university campus is one of the highest power consuming institutions and tends to have a wide variation of electric load depending on time and environment. For these reasons, an accurate electric load forecasting method that can predict power consumption in real-time is required for efficient power supply and management. Even though various influencing factors of power consumption have been discovered for the educational institutions by analyzing power consumption patterns and usage cases, further studies are required for the quantitative prediction of electric load. In this paper, we build an electric load forecasting model by implementing and evaluating various machine learning algorithms. To do that, we consider three building clusters in a campus and collect their power consumption every 15 minutes for more than one year. In the preprocessing, features are represented by considering periodic characteristic of the data and principal component analysis is performed for the features. In order to train the electric load forecasting model, we employ both artificial neural network and support vector machine. We evaluate the prediction performance of each forecasting model by 5-fold cross-validation and compare the prediction result to real electric load.

EFFECT OF TAPER AND SURFACE AREA OF INNER CROWN ON THE RETENTIVE FORCE OF ELECTROFORMED OUTER CROWN (전기성형술로 제작된 외관의 유지력에 내관의 축면경사도와 표면적이 미치는 영향)

  • Kang Wan-Keun;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.165-173
    • /
    • 2006
  • Purpose: With gold electroforming system fir the double crown, the secondary crown is electroformed directly onto the primary crown. An even thick layer of high precision can be acquired. It is thought that the retention of electroformed outer crown is primarily acquired by the adhesive force (surface tension) through the saliva which is interposed between precisely fitted inner and outer crown. The purpose of this study was to investigate the effect of taper and surface area of inner crown on the retentive force of electroformed outer crown according to the presence of saliva. Materials and methods: 32 titanium inner crowns with cervical diameter of 8 mm and cone angles of 0, 2, 4, 6 degrees, which had same surface area by regulated height, were machined on a lathe. Another 32 titanium inner crowns with cone angles of 0, 2, 4, 6 degrees, which had doubled surface area by increased cervical diameter. were fabricated. Eight specimens of each group, for a total of 64 titanium inner crowns, were prepared. The electroformed outer crowns were fabricated directly on the inner crowns by using electroforming machine(GAMMAT free, Gramm Technik, Germany). The tertiary frameworks were waxed-up on the electroformed outer crown and cast using nonprecious alloy($Rexillium^(R)III,\;Jeneric^(R)/Pentronh^(R)$ Inc., USA). The cast metal frameworks were sandblasted with alubimium oxides and cemented using resin cement(Superbond C&B, Sun Medical Co., Japan) over the electroformed copings of each specimen. Then, artificial saliva($Taliva^(R)$, Halim Pharm. Co., Korea) was sprayed between the inner and outer crown, and they were connected under 5 kg force. The retentive force was measured by the universal testing machine(Tinius Olsen 1000, Tinius Olsen, USA) with a cross-head speed of 66.67 mm/sec. The direction of cross-head travel was exactly aligned with the path of removal of the respective specimens. This measurement procedures for retentive force of electroformed outer crown with artificial saliva were repeated in the same way without presence of artificial saliva. Results and Conclusion: The following conclusions were drawn: 1. The retentive force of electroformed outer crown was decreased according to increased taper of inner crown(P<.05). 2. The retentive force of electroformed outer crown showed no significant differences according to surface area and the presence of artificial saliva(P>.05).

Compressive strength prediction of CFRP confined concrete using data mining techniques

  • Camoes, Aires;Martins, Francisco F.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • During the last two decades, CFRP have been extensively used for repair and rehabilitation of existing structures as well as in new construction applications. For rehabilitation purposes CFRP are currently used to increase the load and the energy absorption capacities and also the shear strength of concrete columns. Thus, the effect of CFRP confinement on the strength and deformation capacity of concrete columns has been extensively studied. However, the majority of such studies consider empirical relationships based on correlation analysis due to the fact that until today there is no general law describing such a hugely complex phenomenon. Moreover, these studies have been focused on the performance of circular cross section columns and the data available for square or rectangular cross sections are still scarce. Therefore, the existing relationships may not be sufficiently accurate to provide satisfactory results. That is why intelligent models with the ability to learn from examples can and must be tested, trying to evaluate their accuracy for composite compressive strength prediction. In this study the forecasting of wrapped CFRP confined concrete strength was carried out using different Data Mining techniques to predict CFRP confined concrete compressive strength taking into account the specimens' cross section: circular or rectangular. Based on the results obtained, CFRP confined concrete compressive strength can be accurately predicted for circular cross sections using SVM with five and six input parameters without spending too much time. The results for rectangular sections were not as good as those obtained for circular sections. It seems that the prediction can only be obtained with reasonable accuracy for certain values of the lateral confinement coefficient due to less efficiency of lateral confinement for rectangular cross sections.

Effect of surface treatment on the mechanical properties of nickel-titanium files with a similar cross-section

  • Kwak, Sang Won;Lee, Joo Yeong;Goo, Hye-Jin;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • Objectives: The aim of this study was to compare the mechanical properties of various nickel-titanium (NiTi) files with similar tapers and cross-sectional areas depending on whether they were surface-treated. Materials and Methods: Three NiTi file systems with a similar convex triangular cross-section and the same ISO #25 tip size were selected for this study: G6 (G6), ProTaper Universal (PTU), and Dia-PT (DPT). To test torsional resistance, 5 mm of the straightened file's tip was fixed between polycarbonate blocks (n = 15/group) and continuous clockwise rotation until fracture was conducted using a customized device. To evaluate cyclic fatigue resistance, files were rotated in an artificial curved canal until fracture in a dynamic mode (n = 15/group). The torsional data were analyzed using 1-way analysis of variance and the Tukey post-hoc comparison test, while the cyclic fatigue data were analyzed using the Mann-Whitney U test at a significance level of 95%. Results: PTU showed significantly greater toughness, followed by DPT and G6 (p < 0.05). G6 showed the lowest resistance in ultimate torsional strength, while it showed a higher fracture angle than the other files (p < 0.05). In the cyclic fatigue test, DPT showed a significantly higher number of cycles to failure than PTU or G6 (p < 0.05). Conclusions: Within the limitations of this study, it can be concluded that the torsional resistance of NiTi files was affected by the cross-sectional area, while the cyclic fatigue resistance of NiTi files was influenced by the surface treatment.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Book Remodeling Analysis of Femur Using Hybrid Beam Theory (보 이론을 이용한 대퇴골 재생성의 해석)

  • Kim, Seung-Jong;Jeong, Jae-Yeon;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.329-337
    • /
    • 2000
  • An investigation has been performed to develop an analysis tool based on a nonlinear beam theory, which can be used to predict the long-term behavior of an artificial hip joint. The nonlinear behav ior of the femur arise from the coupled dependence of the bone density and the mechanical properties on each other. The beam theory together with its numerical algorithm is developed to take into account the nonlinear bone remodeling process of the femur that is long enough to be assumed as a beam. A piecewise linear curve for the bone remodeling rate is used in the bone remodeling theory and the surface area density of bone is modeled as the third order polynomial function of bone density. At each section of the beam, a constant curvature is assumed and the longitudinal strains are also assumed to vary linearly across the section. The Newton-Rhapson iteration method is used to solve the nonlinear equations for each cross section of the bone and a backward method is used to march along the time. The density and the remodeling signal ar, calculated along with time for the various time steps, and the developed beam theory has been verified by comparing with the results of finite element analysis of a remodeling bone with an artificial hip joint of titanium prosthesis subjected to uni-axial loads and pure bending moment. It is concluded that the developed beam theory can be used to predict the long-term behavior of the femur and thus to design the artificial hip prosthesis.

Effect of different denture cleansers on surface roughness and microhardness of artificial denture teeth

  • Yuzugullu, Bulem;Acar, Ozlem;Cetinsahin, Cem;Celik, Cigdem
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.333-338
    • /
    • 2016
  • PURPOSE. The aim of this study was to compare the effects of different denture cleansers on the surface roughness and microhardness of various types of posterior denture teeth. MATERIALS AND METHODS. 168 artificial tooth specimens were divided into the following four subgroups (n=42): SR Orthotyp PE (polymethylmethacrylate); SR Orthosit PE (Isosit); SR Postaris DCL (double cross-linked); and SR Phonares II (nanohybrid composite). The specimens were further divided according to the type of the denture cleanser (Corega Tabs (sodium perborate), sodium hypochlorite (NaOCl), and distilled water (control) (n=14)) and immersed in the cleanser to simulate a 180-day immersion period, after which the surface roughness and microhardness were tested. The data were analyzed using the Kruskal-Wallis test, Conover's nonparametric multiple comparison test, and Spearman's rank correlation analysis (P<.05). RESULTS. A comparison among the denture cleanser groups showed that NaOCl caused significantly higher roughness values on SR Orthotyp PE specimens when compared with the other artificial teeth (P<.001). Furthermore, Corega Tabs resulted in higher microhardness values in SR Orthotyp PE specimens than distilled water and NaOCl (P<.005). The microhardness values decreased significantly from distilled water, NaOCl, to Corega Tabs for SR Orthosit PE specimens (P<.001). SR Postaris DLC specimens showed increased microhardness when immersed in distilled water or NaOCl when compared with immersion in Corega Tabs (P<.003). No correlation was found between surface roughness and microhardness (r=0.104, P=.178). CONCLUSION. NaOCl and Corega Tabs affected the surface roughness and microhardness of all artificial denture teeth except for the new generation nanohybrid composite teeth.

Surface Properties of Artificial Suedes (인조 스웨이드의 표면특성)

  • Roh, Eui Kyung;Oh, Kyung Wha
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.309-315
    • /
    • 2013
  • This study examines the difference of surface properties according to napping characteristic of artificial suedes, measuring surface structure observation, the contact/non-contact method roughness, warm-cool feeling of touch, and subjective hand evaluation. Surface and cross-section observations showed a discernible difference in fineness, curl, length, mount of napping, and covering power of base fabric. The surface properties of artificial suede evaluated by KES-FB4 showed that the shorter napping length the more smooth surface and the roughness increased reciprocally with friction resistance and surface contour when the nap length reaches a high level. The surface roughness measuring system applied a laser displacement sensor by a non-contact method to assess napping characteristic and the base fabric and napping height. Surface roughness decreased when napping was uniformly covered with base fabric; however, the surface roughness increased specifically with the uneven covering power of the base fabric. For qmax of the suedes, those that had short and smaller amounts of napping increased; however, the napping of length and amount at some stage generated a low qmax value. The warm sensation in all suedes were strongly perceived, but the cool sensation of the perception was lower in the subjective evaluation. Smoothness and softness were perceived when the suede has a long and large amount napping; however, smoothness and hardness were perceived when the suede was short and with the uneven covering power.

Fabrication and Vibration Characterization of a Partially Etched-type Artificial Basilar Membrane

  • Kang, Hanmi;Jung, Youngdo;Kwak, Jun-Hyuk;Song, Kyungjun;Kong, Seong Ho;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.373-378
    • /
    • 2015
  • The structure of the human ear is divided into the outer ear, the middle ear, and the inner ear. The inner ear includes the cochlea that plays a very important role in hearing. Recently, the development of an artificial cochlear device for the hearing impaired with cochlear damage has been actively researched. Research has been carried out on the biomimetic piezoelectric thin film ABM (Artificial Basilar Membrane) in particular. In an effort to improve the frequency separation performance of the existing piezoelectric thin film ABM, this paper presents the design, fabrication, and characterization of the production and performance of a partially etched-type ABM material. $O_2$ plasma etching equipment was used to partially etch a piezoelectric thin film ABM to make it more flexible. The mechanical-behavior characterization of the manufactured partially etched-type ABM showed that the overall separation frequency range shifted to a lower frequency range more suitable for audible frequency bandwidths and it displayed an improved frequency separation performance. In addition, the maximum magnitude of the vibration displacement at the first local resonant frequency was enhanced by three times from 38 nm to 112 nm. It is expected that the newly designed, partially etched-type ABM will improve the issue of cross-talk between nearby electrodes and that the manufactured partially etched-type ABM will be utilized for next-generation ABM research.