• Title/Summary/Keyword: artifical potential field

Search Result 2, Processing Time 0.016 seconds

Moving obstacle avoidance of a robot using avoidability measure (충돌 회피 가능도를 이용한 로봇의 이동 장애물 회피)

  • Ko, Nak-Yong;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.169-178
    • /
    • 1997
  • This paper presents a new solution approach to moving obstacle avoidance problem of a robot. A new concept, avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of three state variables: the distance from the obstacle to the robot, outward speed of the obstacle relative to the robot, and outward speed of the robot relative to the obstacle. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF, an artificial potential is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid a moving obstacle in real time. Since the algorithm considers the mobility of the obstacle and robot as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

Weed Management Technology with Host Specific of Biological Control Agents (기주특이성 잡초 활성 미생물을 이용한 잡초방제 기술)

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Song, Seok-Bo;Park, Sung-Tae;Kim, Jeong-Nam;Geon, Min-Goo;Kim, In-Seob
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.175-190
    • /
    • 2006
  • The term mycoherbicide started in 1970, but its interest heightened due to increase costs of chemical herbicides. A classical biocontrol agent is expected to become a permanent part of its new environment and do no harm to it. Contemporary biological control agent(BCA) must be produced by artificial culture and could be applied like chemical herbicides over weeds. BCA is different from the classical approach in that it released through natural spread. To date 26 species of fungi are used as classical BCA against 26 species of weeds in seven countries. There are a number of examples of pathogens attacking non-target plants. But through risk assessments which include understanding the taxonomy, biology and ecology, the target and non-target species, it will be safe to introduce of exotic pathogens to control weeds. But pathogens have not been successfully used in practice. Many mycoherbicides show potential in laboratories, but are ineffective in the field and not consistent from year to year or field to field. There is also a lack of understanding humidity, dew formation and temperature and their effects on suppression of weeds by plant pathogens. Potential pathogen must be selected as a BCA. Previous studies suggest that these pathogens must (1) produce abundant and durable inoculum in artifical culture, (2) be genetically stable and weed specific and (3) kill weeds in control. A granular preparation of mycoherbicide into sodium alginate is lighter than liquids and less bulky than organic matter. Gel forms have also been used.