• 제목/요약/키워드: artifical neural network

검색결과 26건 처리시간 0.028초

실시간 기상자료를 이용한 다지점 강우 예측모형 연구 (A Study on Multi-site Rainfall Prediction Model using Real-time Meteorological Data)

  • 정재성;이장춘;박영기
    • 한국환경과학회지
    • /
    • 제6권3호
    • /
    • pp.205-211
    • /
    • 1997
  • For the prediction of multi-site rainfall with radar data and ground meteorological data, a rainfall prediction model was proposed, which uses the neural network theory, a kind of artifical Intelligence technique. The Input layer of the prediction model was constructed with current ground meteorological data, their variation, moving vectors of rain- fall field and digital terrain of the measuring site, and the output layer was constructed with the predicted rainfall up to 3 hours. In the application of the prediction model to the Pyungchang river basin, the learning results of neural network prediction model showed more Improved results than the parameter estimation results of an existing physically based model. And the proposed model comparisonally well predicted the time distribution of ralnfall.

  • PDF

ANN-XGB를 이용한 수중 산소 농도 예측 (ANN-XGB based predictions of dissolved oxygen)

  • 조광현;이근영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.457-458
    • /
    • 2022
  • 하천의 용존 산소량은 어류의 생존과 관계되는 중요한 수질 정보중 하나이다. 안양천에서 수집된 수질 정보 및 기상 정보를 이용하여 artificial neural network - XGBoost (ANN-XGB)를 훈련하였으며, 12시간 이후의 DO를 예측할 수 있다. 본 발표에서는 ANN-XGB의 performance를 보고한다.

  • PDF

PC 수직 접합부의 극한 전단 내력 예측에 대한 인공 신경 회로망의 적용 (Application of Artificial Neural Networks to Predict Ultimate Shear Capacity of PC Vertical Joints)

  • 김택완;이승창;이병해
    • 전산구조공학
    • /
    • 제9권2호
    • /
    • pp.93-101
    • /
    • 1996
  • 인공 신경회로망은 인간의 뇌를 전산 모델로 구현한 것으로 상호 연결된 많은 정보 처리 유니트들로 구성되어 있으며, 이를 기초로 논리적인 추론을 수행할 수 있다. 특히, 신경망은 비선형 변수를 많이 포함하고 있는 복잡한 문제 해결에서 더욱 효과적이다. 신경망의 이러한 기능으로 인해 구조분야에서는 비선형적인 각종 구조실험의 결과예측이나 구조계획 그리고 최적 설계에 응용되고 있는 추세이다. 본 논문에서는 인공 신경 회로망의 기본 이론을 설명하고, 현재까지 정립되고 있지 않은 대형 콘크리트 판넬간 수직 접합부의 최대 전단 내력 예측에 기존의 제안식과 인공 신경 회로망의 예측 결과를 비교하여 신경망의 적용가능성을 검토하고자 한다.

  • PDF

데이터간 의미 분석을 위한 R기반의 데이터 가중치 및 신경망기반의 데이터 예측 모형에 관한 연구 (A Novel Data Prediction Model using Data Weights and Neural Network based on R for Meaning Analysis between Data)

  • 정세훈;김종찬;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제18권4호
    • /
    • pp.524-532
    • /
    • 2015
  • All data created in BigData times is included potentially meaning and correlation in data. A variety of data during a day in all society sectors has become created and stored. Research areas in analysis and grasp meaning between data is proceeding briskly. Especially, accuracy of meaning prediction and data imbalance problem between data for analysis is part in course of something important in data analysis field. In this paper, we proposed data prediction model based on data weights and neural network using R for meaning analysis between data. Proposed data prediction model is composed of classification model and analysis model. Classification model is working as weights application of normal distribution and optimum independent variable selection of multiple regression analysis. Analysis model role is increased prediction accuracy of output variable through neural network. Performance evaluation result, we were confirmed superiority of prediction model so that performance of result prediction through primitive data was measured 87.475% by proposed data prediction model.

순환 신경망 모델을 이용한 한국어 음소의 음성인식에 대한 연구 (A Study on the Speech Recognition of Korean Phonemes Using Recurrent Neural Network Models)

  • 김기석;황희영
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.782-791
    • /
    • 1991
  • In the fields of pattern recognition such as speech recognition, several new techniques using Artifical Neural network Models have been proposed and implemented. In particular, the Multilayer Perception Model has been shown to be effective in static speech pattern recognition. But speech has dynamic or temporal characteristics and the most important point in implementing speech recognition systems using Artificial Neural Network Models for continuous speech is the learning of dynamic characteristics and the distributed cues and contextual effects that result from temporal characteristics. But Recurrent Multilayer Perceptron Model is known to be able to learn sequence of pattern. In this paper, the results of applying the Recurrent Model which has possibilities of learning tedmporal characteristics of speech to phoneme recognition is presented. The test data consist of 144 Vowel+ Consonant + Vowel speech chains made up of 4 Korean monothongs and 9 Korean plosive consonants. The input parameters of Artificial Neural Network model used are the FFT coefficients, residual error and zero crossing rates. The Baseline model showed a recognition rate of 91% for volwels and 71% for plosive consonants of one male speaker. We obtained better recognition rates from various other experiments compared to the existing multilayer perceptron model, thus showed the recurrent model to be better suited to speech recognition. And the possibility of using Recurrent Models for speech recognition was experimented by changing the configuration of this baseline model.

적응진화알고리즘을 이용한 신경망-전력계통안정화장치의 설계 (A Design of Artifical Neural Network Power System Stabilizer Using Adaptive Evolutionary Algorithm)

  • 박재영;최재곤;황기현;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1177-1179
    • /
    • 1999
  • This paper presents a design of artificial neural network power system stabilizer(ANNPSS) using adaptive evolutionary algorithm(AEA). We have proposed an adaptive evolutionary algorithm which uses both a genetic algorithm(GA) and an evolution strategy(ES), useing the merits of two different evolutionary computations. ANNPSS shows better control performances than conventional power system stabilizer(CPSS) in three-phase fault with heavy load which is used when tuning ANNPSS. To show the robustness of the proposed ANNPSS, it is applied to damp the low frequency oscillation caused by disturbances such as three-phase fault with normal and light load. the proposed ANNPSS shows better robustness than CPSS.

  • PDF

The prediction of interest rate using artificial neural network models

  • Hong, Taeho;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.741-744
    • /
    • 1996
  • Artifical Neural Network(ANN) models were used for forecasting interest rate as a new methodology, which has proven itself successful in financial domain. This research intended to construct ANN models which can maximize the performance of prediction, regarding Corporate Bond Yield (CBY) as interest rate. Synergistic Market Analysis (SMA) was applied to the construction of models [Freedman et al.]. In this aspect, while the models which consist of only time series data for corporate bond yield were devloped, the other models generated through conjunction and reorganization of fundamental variables and market variables were developed. Every model was constructed to predict 1,6, and 12 months after and we obtained 9 ANN models for interest rate forecasting. Multi-layer perceptron networks using backpropagation algorithm showed good performance in the prediction for 1 and 6 months after.

  • PDF

미소 결함 평가를 위한 지능형 데이터베이스 구축에 관한 연구 (A Study about the Construction of Intelligence Data Base for Micro Defect Evaluation)

  • 김재열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.585-590
    • /
    • 2000
  • Recently, It is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic Signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of Ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research, considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic Signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness, sound velocity, and step height, regardless of interference phenomenon. Numeral information was deduced and quantified effective information from the image. Also, pattern recognition of a defected input image was performed by neural network algorithm. Input pattern of various numeral was composed combinationally, and then, it was studied by neural network. Furthermore, possibility of pattern recognition was confirmed on artifical defected input data formed by simulation. Finally, application on unknown input pattern was also examined.

  • PDF

선박 자동접안 시스템 구축을 위한 인공신경망의 적용 (The Application of Artificial Neural Network for Constructions of Automatic Berthing System of a Ship)

  • 이승건;이경우;이승재;정성룡
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 춘계학술발표회 논문집
    • /
    • pp.111-119
    • /
    • 1998
  • 본 연구에서는선박의 조종운동 중 중요한 과제인 접안운동을 자동화하기 위하여 현대제어이론중의 하나인 인공신경망(Artifical Neural Network, 이하 ANN으로 함)에 의한제어를 수행하였다.잘 알려진 바와 같이 ANN은 어떤 시스템의 입출력간의 연결상황과 요소들 내부의 처리방법을 정의하여 시스템을 표현하는 방법이다. 구체적으로는 시스템의 입출력에 대한 모범적인 교사 데이터(Teaching data)를 준비하여 교사데이타와 실제 입출력간의 오차가 최소가 되도록 학습을 시키게 된다. 학습의 결과 ANN은 그 시스템의 비선형성을 충분히 표현할 수가있어, 접안운동과 같은 비선형성이 강한 조종운도에 적합할 것으로 생각된다.

  • PDF

인공 신경망을 이용한 분권 전동기의 고장 진단 (Fault Diagnosis of Shunt Motor using Artificial Neural Network)

  • 이기상;최낙원;임재형;이정동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.21-23
    • /
    • 1994
  • A Fault Detection. Isolation scheme based on ANN(Artifical Neural Network) is proposed for the supervision of a DC shunt motor. The Proposed FDI scheme can promptly detect the occurence of fault and classify all the faults that may occur during the operation. Also. it covers the full operating range in spite that the mathematical model of the motor contain strong nonlinearities. The simulation results show that the FDIU has good diagnostic ability even in the noisy environment.

  • PDF