• Title/Summary/Keyword: artifact-designing

Search Result 13, Processing Time 0.021 seconds

Learning Science in Communicating Science and Technology In-the-making: A Case Study of the 'Science and Technology Mania' Award Program

  • Hwang, Sung-Won;Hwang, Book-Kee;Choi, Jung-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.2
    • /
    • pp.126-133
    • /
    • 2007
  • The 'Science and Technology Mania' award program is an annual nationwide award activity organized to provide teenagers with opportunities for engaging in a high-technology-based long-term project work. The task involves designing a model ship propelled by the Lorentz force (a Lorentz ship) that allows diverse approaches irreducible to one right answer, and thus adopts features of science and technology in-the-making, In this study, we attend to opportunities for learning science that the uncertain aspects of artifact-designing project provide with participants, particularly when students communicate with scientists about their design practices. We analyze oral presentation sessions of the program and articulate two findings. First, students articulate embodied knowing in the presence of scientists. Second, students enact discursive resources deployed in concrete action. We conclude that students' design practices constitute referent that communication is directed toward and therefore become resources for developing scientific discourse.

Co-evolving with Material Artifacts: Learning Science through Technological Design

  • Hwang, Sung-Won;Roth, Wolff-Michael
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.1
    • /
    • pp.76-89
    • /
    • 2004
  • Recent studies of science and technology "in-the-making" revealed that the process of designing material artifacts is not a straightforward application of prior images or theories by one (or more) person(s) isolated from his or her (their) environment. Rather, designing is a process contingent on the social and material setting for both engineering designers and students. Over the past decade, designing technological artifacts has emerged as an important learning environment in science classrooms. Through the analyses of a large database concerning an innovative simple machines curriculum for sixth-and seventh-grade students, we accumulated valid evidence for the nature of the designing process and science learning through it. In this paper, we show that design actions intertwine with the transformation of the objectified raw materials and artifact, the designer collective, and the mediating tools enabling that transformation, which constitute the elements of an activity from the perspective of cultural-historical activity theory. We conceptualize the continuous change of relation between material artifacts, designers, and tools throughout the design activity as co-evolution. Two episodes were selected to exemplify synchronic and diachronic change of relations inherent in co-evolving activity system. Finally, we discuss the implications of co-evolution during design activity for science learning.

A Method for Motion Artifact Compensation of PPG Signal (광혈류량 신호의 움직임 훼손 보상 기법)

  • Kim, Hansol;Lee, Eui Chul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.543-549
    • /
    • 2013
  • Motion artifacts of central and autonomic nervous system signals degrades the performance of the bio-signal based human factor analysis. Firstly, we propose a defining method of motion artifact section by analyzing successive image frames. Motion artifact section is defined when the amount of motion is greater than the pre-defined threshold. In here, the amount of motion is estimated by first derivation of image frames at temporal domain. Secondly, we propose another defining method of motion artifact section through designing 2D Gaussian probability density function model by analyzing feature vectors of one cycle of signal such as length and amplitude. The defined motion artifact sections are interpolated on the basis of 1D Gaussian function. At result of applying the method into photoplethysmography signal, we confirmed that the calculated heartbeat rate from the restored photoplethysmography came up to the one from electrocardiography. Also, we found that the video based method generated relatively more false acceptance of motion artifact section and the probability density function based method generated relatively more false rejection of motion artifact section.

A Quest of Design Principles of Cognitive Artifacts through Case Analysis in e-Learning: A Learner-Centered Perspective

  • PARK, Seong Ik;LIM, Wan Chul
    • Educational Technology International
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2009
  • Learners are often posited in a paradoxical situation where they are not fully involved in decision making processes on how to learn, in designing their tools. Cognitive artifacts in e-learning are supposed to effectively support learner-centered e-learning. The purpose of the study is to analyze cases of cognitive artifacts and to inquire those design principles for facilitating the learner-centered e-learning. Four research questions are suggested: First, it will be analyzed the characteristics of learners with respect to design of cognitive artifacts for supporting the learner-centered e-learning. Second, characteristics of four cases to design cognitive artifacts in learner-centered e-learning environment are analyzed. Third, it will be suggested the appropriate design principles of cognitive artifacts to facilitating learner-centered learning in e-learning environment. Four cases of cognitive artifacts design in learner-centered e-learning was identified as follows: Wiki software as cognitive artifacts in computer-supported collaborative learning; 'Play Around Network (PAN)' as cognitive artifact to monitor learning activities in knowledge community; Knowledge Forum System (KFS) as a cognitive artifact in knowledge building; cognitive artifacts in Courses-as-seeds applied meta-design. Five design principles are concluded as follows: Promoting externalization of cognitive artifacts to private media; Helping learners to initiate their learning processes; Encouraging learners to make connections with other learners' knowledge building and their cognitive artifacts; Promoting monitoring of participants' contributions in collaborative knowledge building; Supporting learners to design their cognitive artifacts.

The Effects of Scratch Programming on Preservice Teachers: Assessment Utilizing Computational Thinking and Bloom's Taxonomy (스크래치 프로그래밍이 예비교사에게 미치는 영향 : 컴퓨팅 사고 및 블룸의 텍사노미 활용 평가)

  • Choi, Hyungshin;Kim, Kibum
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.2
    • /
    • pp.225-232
    • /
    • 2015
  • The goal of this study is to assess the effects of Scratch programming classes on preservice teachers by using computational thinking and cognitive evaluations based on Bloom's taxonomy. To pursue this research goal we measured preservice teachers' programming skills using cognitive evaluation items based on Bloom's taxonomy after preservice teachers took one-semester Scratch programming course. In addition, a survey focused on computational thinking (CT) concepts, CT practices, and CT perspectives was conducted. We also conducted artifact-based interviews to unpack preservice teachers' experiences of working on team projects and analyzed their experiences qualitatively. The results of this study are meaningful because we assessed preservice teachers' experiences comprehensively with both quantitative and qualitative methods. In addition, this study provides us with implications for evaluation perspectives in designing programming courses for preservice teachers by adopting Bloom's taxonomy scheme.

Task-Based Ontology of Problem Solving Adapters for Developing Intelligent Systems

  • Ko, Jesuk;Kitjongthawonkul, Somkiat
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.353-360
    • /
    • 2004
  • In this paper we describe Task-Based Problem Solving Adapters (TPSAs) for modeling a humam solution (through activity-centered analysis) to a software solution (in form of computer-based artifact). TPSAs are derived from the problem solving pattern or consistent problem solving structures/strategies employed by practitioners while designing solutions to complex problems. The adapters developed by us lead toward human-centeredness in their design and underpinning that help us to address the pragmatic task constraints through a range of technologies like neural networks, fuzzy logic, and genetic algorithms. We also outline an example of applying the TPSAs to develop a working system for assisting sales engineers of an electrical manufacturing firm in preparing indent and monitoring the status of orders in the company.

Image Exposure Compensation Based on Conditional Expectation (Conditional Expectation을 이용한 영상의 노출 보정)

  • Kim, Dong-Sik;Lee, Su-Yeon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.121-132
    • /
    • 2005
  • In the formation of images in a camera, the exposure time is appropriately adjusted to obtain a good image. Hence for a successful alignment of a sequence of images to the same scene, it is required to compensate the different exposure times. If we have no knowledge regarding the exposure time, then we should develop an algorithm that can compensate an image with respect to a reference image without using any camera formation models. In this paper, an exposure compensation is performed by designing predictors based on the conditional expectation between the reference and input images. Further, an adaptive predictor design is conducted to manage the irregular exposure or histogram problem. In order to alleviate the blocking artifact and the overfitting problems in the adaptive scheme, a smoothing technique, which uses the pixels of the adjacent blocks, is proposed. We successfully conducted the exposure compensation using real images obtained from digital cameras and the transmission electron microscopy.

Bio-applicable Ti-based Composites with Reduced Image Distortion Under High Magnetic Field (높은 자장하에서 자기공명 영상 왜곡이 완화된 생체용 Ti 복합재료)

  • Kim, Sung-Chul;Kim, Yu-Chan;Seok, Hyun-Kwang;Yang, Seok-Jo;Shon, In-Jin;Lee, Kang-Sik;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.401-406
    • /
    • 2012
  • When viewed using a magnetic resonance imaging (MRI) system, invasive materials inside the human body, in many cases, severely distort the MR image of human tissues. The degree of the MR image distortion increases in proportion not only to the difference in the susceptibility between the invasive material and the human tissue, but also to the intensity of the magnetic field induced by the MRI system. In this study, by blending paramagnetic Ti particles with diamagnetic graphite, we synthesized $Ti_{100-x}C_x$ composites that can reduce the artifact in the MR image under the high-strength magnetic field. Of the developed composites, $Ti_{70}C_{30}$ showed the magnetic susceptibility of ${\chi}=67.6{\times}10^{-6}$, which corresponds to 30% of those of commercially available Ti alloys, the lowest reported in the literature. The level of the MR image distortion in the vicinity of the $Ti_{70}C_{30}$ composite insert was nearly negligible even under the high magnetic field of 4.7 T. In this paper, we reported on a methodology of designing new structural materials for bio-applications, their synthesis, experimental confirmation and measurement of MR images.

Multisensory based AR System for Education of Cultural Heritage

  • Jeong, Eunsol;Oh, Jeong-eun;Won, Haeyeon;Yu, Jeongmin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.61-69
    • /
    • 2019
  • In this paper, we propose a multisensory(i.e., visual-auditory-tactile) based AR system for the education of cultural heritage. The proposed system provides a multisensory interaction by designing a user to experience with a 3D printed artifact which is mapped by a virtual 3D content of digital heritage. Compared with the existing systems of cultural heritage education based on augmented reality(AR) technology, this system focused on not only providing learning experience via a sense of visual and auditory, but also a sense of tactile. Furthermore, since this systems mainly provided the direct interactions using a 3D printed model, it gives a higher degree of realism than existing system that use touch or click motions on a 2D display of mobile phones and tablets. According to a result of user testing, we concluded that the proposed system delivered the excellent presence and learning flow to users. Particularly, from the usability evaluation, a 3D printed target artifact which is similar in shape to original heritage artifact, achieved the highest scores among the various tested targets.

Reliability-Based Deblocking Filter for Wyner-Ziv Video Coding

  • Dinh, Khanh Quoc;Shim, Hiuk Jae;Jeon, Byeungwoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.129-142
    • /
    • 2016
  • In Wyner-Ziv coding, video signals are reconstructed by correcting side information generated by block-based motion estimation/compensation at the decoder. The correction is not always accurate due to the limited number of parity bits and early stopping of low-density parity check accumulate (LDPCA) decoding in distributed video coding, or due to the limited number of measurements in distributed compressive video sensing. The blocking artifacts caused by block-based processing are usually conspicuous in smooth areas and degrade the perceptual quality of the reconstructed video. Conventional deblocking filters try to remove the artifacts by treating both sides of the block boundary equally; however, coding errors generated by block-based processing are not necessarily the same on both sides of the block boundaries. Such a block-wise difference is exploited in this paper to improve deblocking for Wyner-Ziv frameworks by designing a filter where the deblocking strength at each block can be non-identical, depending on the reliability of the reconstructed pixels. Test results show that the proposed filter not only improves subjective quality by reducing the coding artifacts considerably, but also gains rate distortion performance.