• 제목/요약/키워드: arterial pulse

검색결과 221건 처리시간 0.025초

촬상소자를 이용한 맥동의 2차원 계측 (2-dimensional Measurement of Arterial Pulse by Imaging Devices)

  • 김기왕
    • 대한한의진단학회지
    • /
    • 제12권2호
    • /
    • pp.8-17
    • /
    • 2008
  • Objectives: For the traditional pulse diagnosis in Oriental Medicine, not only the pulse shape in time domain, but the width, length and depth of arterial pulse also should be measured. However, conventional pulse diagnostic systems have failed to measure the spatial parameters of the arterial pulse e.g. effective length of arterial pulse in the wrist. In fact, there are many ways to measure that kind of spatial features in arterial pulsation, but among them, the method using image sensor provides relatively cheap and simple way, therefore I tested feasibility of measuring 2-dimensional pressure distribution by imaging devices. Methods: Using widely used PC cameras and dotted balloons, the subtle oscillation of skin over the radial artery was recorded continuously, and then the displacement of every dot was calculated. Consequently, the time course of that displacements shows arterial pulse wave. Results: By the proposed method I could get pressure distribution map with 30Hz sampling rate, 21steps quantization resolution, and approximately 1mm spatial resolution. With reduced quantization resolution, $3cm{\times}4cm$ view angle could be achieved. Conclusion: Although this method has some limitations, it would be useful method for detecting 2-dimensional features of arterial pulse, and accordingly, this method provides a novel way to detect 'narrow pulse', 'wide pulse', 'long pulse', 'short pulse', and their derivatives.

  • PDF

Measurement of Arterial Pulse Wave at the Temple Using PZT Piezo Sensor

  • Kil Se Kee;Han Young Hwan;Lee Eung Hyuk;Park Young Bae;Cho Heung Ho;Min Hong Ki;Hong Seung Hong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.772-775
    • /
    • 2004
  • Generally, arterial pulse waves are measured at the radial arterial of wrist or carotid arterial of neck using a sensor such as pressure sensor, piezoelectric sensor or optic sensor. But in this paper, arterial pulse wave is measured at the temple using PZT piezo sensor which is attached on the temple in form of a hair-band. Arterial Pulse waves are generally measured when a reagent is in a static state. But in this paper, we implemented the arterial pulse wave measurement system, as a previous stage of the arterial pulse wave measurement system for running at outdoors or on a running machine, that measures arterial pulse waves at the temple, which is the least moving part when running. Thorough the continuous study, if the motion artifact when running is possible to be removed, the system will be able to perform monitoring of running men's states and especially emergency signals such as serious pulse waves of an/old and feeble persons and handicapped persons.

  • PDF

무선 기반의 광섬유 간섭계형 맥파센서 시스템 (Wireless Optical Fiber Interferometer Arterial Pulse Wave Sensor System)

  • 박재희;신종덕
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.439-443
    • /
    • 2013
  • A wireless optical fiber interferometer arterial pulse wave sensor system is developed for remote sensing. The wireless optical fiber sensor system consists of Zigbee communication modules and an optical fiber interferometer arterial pulse wave sensor. The optical fiber arterial pulse wave sensor is an in-line Michelson interferometer enclosed with steel reinforcement in a heat-shrinkable tube. The Zigbee communication modules are composed of an ATmega128L microprocessor and a CC2420 Zigbee chip. The arterial pulse waves detected by the optical fiber sensor were transmitted and received via the Zigbee communication modules. The experimental results show that the wireless optical fiber sensor system can be used for monitoring the arterial pulse waves remotely.

구강 내부 맥파 계측을 위한 센서 시스템 연구 (A Study on the Arterial Pulse Wave Measuring System of an Oral Cavity)

  • 김경호
    • 반도체디스플레이기술학회지
    • /
    • 제6권4호
    • /
    • pp.43-47
    • /
    • 2007
  • In this paper, we propose a novel sensor system for measuring the arterial pulse in an oral cavity. In order to measure pulse wave in oral cavity, the proposed system is designed with reflection type arterial wave sensor, not by using transmission type arterial pulse wave sensor. Driving circuit through pulse current is designed for solving self-heating problem of LED. The effectiveness of the proposed sensor system is compared with pulse wave between pulse wave of oral cavity and other body parts as well as with characteristic measurements. The experiment shows that the proposed sensor system is adaptive to capturing consecutive and meaningful biometric signals through the variation of pulse wave changes in oral cavity when exercising. The study result expects to design and develop mobile sensors which could be adapted to healthcare devices.

  • PDF

Embodiment of Spatially Arterial Pulse Diagnostic Apparatus using Array Multiple Hall Devices

  • Lee, Sang-Suk;Kim, Gi-Wang;Ahn, Myung-Cheon;Park, Young-Seok;Choi, Jong-Gu;Choi, Sang-Dae;Park, Dal-Ho;Hwang, Do-Guwn;Yoon, Hyung-Rho
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.721-726
    • /
    • 2007
  • The study relates to achievement and analysis of 3-dimensional spatial pulse wave archived by a spatially arterial pulse diagnostic apparatus (SAPDA), wherein a pulse sensing part array consists of multiple hall devices and is located over a skin contacting part which consists of a magnetic material. When a radially arterial pulse is transferred to the magnetic material, which is contacted skin that results in changes in a magnetic field of the lower part of the pulse sensing part array, the changes in a magnetic field can be detected by the commercial Hall semiconductor device of the pulse sensing part array. Finally, according to development of SAPDA, the 3-dimensionally arterial pulse waveform can be measured noninvasively by detecting the changes of the magnetic field.

맥파 재현장치 개발 동향 (A review on development trends of arterial pulse simulators)

  • 민상원;고복영;장재순;김기왕
    • 대한한의진단학회지
    • /
    • 제16권2호
    • /
    • pp.1-10
    • /
    • 2012
  • Objectives : Recently, for over ten years, various arterial pulse simulators have been developed for training of pulse palpation technique. In this paper, we summarized development trends of those apparatuses. Materials and methods : To search the cases of development, we mainly used China Knowledge Infrastructure (CNKI), National Discovery for Science Leaders (NDSL), Korean Traditional Knowledge Portal, Patent Search by Baidu (百度專利搜索), and some general search engines. Some domain cases introduced were collected based on personal experience. Results : It was found that there were two types of arterial pulse simulators. The first type uses fluids and pumps, while the second type uses actuators without fluid circulation parts. Conclusion : From year 2000, various arterial pulse simulators have been developed. In general, they could be classified two types. Further effort toward Maixiang (脈象) simulation and validation in field is needed.

지첨-족지 지수에 의한 동맥 혈관 특성화 연구 (A Study on Arterial Characterization using Finger-Toe Index (FTI))

  • 변미경;한상휘;허웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.777-785
    • /
    • 2007
  • In this paper, Finger-Toe Index (FTI) is proposed as an analytic parameter for the characterization of arterial vessel. Different from the currently being employed pulse wave velocity (PWV) information of the volume pulse wave measured from 4 arterial channels, the proposed FTI uses the ratio of the shorter of the two up-stroke time of PPG from fingers ($UT_{finger}$) and that of PPG (Photoplethysmography) from toes ($UT_{toe}$). To verify the usefulness of the proposed method, Finger-Toe Indexes were derived from the volume pulse waves acquired from 50 people under examination aged from 12 to 81 years old, and they were then compared with blood pressure ankle-brachial index (ABI). It was successfully demonstrated that the arterial stiffness can be estimated with respect to age and FTI is more strongly correlated with the pulse transit time than ABI. From the regression analysis, we also found that FTI has significant correlation PWV for a quantitative index of arterial stiffness and provides more accurate information than ABI for the characterization of arterial vessel.

The Correlation of Pulse Wave Velocity and Atherosclerotic Risk Factor in Stroke Patients

  • Jin, Bok Hee;Han, Min Ho
    • 대한임상검사과학회지
    • /
    • 제47권1호
    • /
    • pp.28-34
    • /
    • 2015
  • Pulse wave velocity (PWV) is used to non-invasively estimate the severity of arteriosclerosis by measuring arterial stiffness. Increased arterial stiffness measured by PWV stands for progressive arteriosclerosis and is caused by atherosclerotic risk factors. This study is focused on how brachial-ankle pulse wave velocity (baPWV) is related to the leading risk factors for arteriosclerosis or atherosclerosis. Subjects were 114, 69 males and 45 females who are in 60's and had baPWV test for acute stroke. The results are as follows: the group with increased arterial stiffness showed significant increase in HbA1c, total cholesterol, BSBP (brachial artery systolic blood pressure), BDBP (brachial artery diastolic blood pressure), CSBP (central artery systolic blood pressure), CDBP (central artery diastolic blood pressure), augmentation index (AIx) and diabetes mellitus. Correlation analysis between baPWV and atherosclerotic risk factor showed significant relationship in age, HbA1c, LDL cholesterol, BSBP, BDBP, CSBP, CDBP and augmentation index. baPWV was independently related to age and BSBP in multiple linear regression analysis. The group with increased arterial stiffness was independently related to BDBP in multiple logistic regression analysis. This study might be meaningful in evaluating the relationship between arterial stiffness and atherosclerotic risk factor in a new way, and be helped to make various studies for cardiovascular disease.

용적맥파 상승시간에 의한 혈관 특성화 연구 (A Study on Arterial Characterization by using Up-stroke Time of Photoplethysmogram)

  • 변미경;한상휘;허웅
    • 전기전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.108-116
    • /
    • 2007
  • This paper proposed an analyzable parameter and its analytic method to provide more accurate information than currently employed 4 channels system which uses pulse wave velocity (PWV) information of the volume pulse wave measured from 4 arterial channels for the characterization of arterial vessel. In order to verify the volume pulse waves on 4 sites were simultaneously acquired subjects aged from 12 to 81 years old. and the proposed parameters were extracted from time (UT) was then compared with blood pressure. Then, the regression analyses were done relationships among the proposed parameter and others, such as aging, pulse transit time pressure (BP). The followings are the results of linear regression analysis of the proposed parameter for total 50 normal subjects. We selected any two subjects (58 years and 27 years) and measured PPG (photoplethysmogram) and BP of before and after exercise. The coefficient of correlations between BP and UT observed was -0.928 for 50 years subject, and -0.922 for 20 years subject. For total 50 normal subjects, in case of correlation between the pulse transit time and BP, the result showed -0.170 on left side and -0.233 on right side, and the coefficient value of correlation between the pulse transit time and UT was -0.607 on left side and -0.510 on right side. UI is strongly correlated with the pulse transit time than BP. Hence, we believe that the proposed parameter is related with the index of arterial stiffness.

  • PDF

압전 필름과 전도성 섬유를 이용한 맥파 전달 속도 측정을 위한 센서의 제작 및 성능평가 (Fabrication and Evaluation of Sensor for Measuring Pulse Wave Velocity using Piezo Film and Conductive Textile)

  • 김정채;지선하;유선국
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.135-143
    • /
    • 2012
  • Arterial stiffness is causing the serious problems for human who is suffered from hypertension and metabolic syndrome. So it is important that measure the arterial stiffness for early prevention. Many researches point out that pulse wave velocity(PWV) is the reliable and simple method to predict arterial stiffness. In this paper, we developed the sensing parts that detect the pulse wave and ECG by using piezoelectric film and conductive textile with elastic band. Our system could detect 3ch pulse wave and ECG. Simultaneously, our algorithm extracts the features for calculating the delays among pulse waves. The delays are the significant parameter to estimate PWV, thus we design the experiment for evaluating the performance of our sensing parts. The reference is PP-1000(HanByul Meditech, Korea) that is good for performance evaluation. As a result, the start point of the pulse wave was the most reliable feature for comparing with PP-1000(r=0.691, P=0.00). The results between two operators showed that there is only a slight difference in the reproducibility of the devices. In conclusion, we assume that the suggested sensor could be more comfortable and faithful method for arterial stiffness.