• Title/Summary/Keyword: arsenic contamination

Search Result 162, Processing Time 0.022 seconds

Assessment of Selected Heavy Metal Concentrations in Agricultural Soils around Industrial Complexes in Southwestern Areas of Korea

  • Kim, Dong-Jin;Park, Jung-Hwon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.524-530
    • /
    • 2016
  • Agricultural soils near or around industrial complexes can contain a certain amount of heavy metals that readily enter the food chain and negatively affect human health. Therefore, we conducted the study to investigate the distribution of selected heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), mercury (Hg), and zinc (Zn), in farm-land soils around fifteen industrial complexes in the southwestern provinces, Korea. The concentrations of heavy metals in the soil samples were determined by the pseudo-total aqua regia (3 HCl : $1HNO_3$) digestion procedure. The heavy metal concentrations in most soils examined did not exceed the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (Region 1) presented in Soil Environment Conservation Law (SECL) established by Ministry of Environment (MOE), Korea. However, only one sampling site showed higher As amount ($27.1mg\;kg^{-1}$) than the SCWS level of As ($25mg\;kg^{-1}$). Pollution index (PI) for heavy metals did not exceed 1.0. The PI values were significantly positively correlated (p < 0.01) with the heavy metal concentrations. In particular, the values of correlation coefficient between the Cd and Pb concentrations and the PI values were higher than those estimated from other combinations, and thus the amounts of Cd and Pb in the agricultural soils highly affected the PI values for the heavy metals.

Studies on Heavy Metal Contamination of Agricultural Products, Soils and Irrigation Waters in Abandoned Mines (폐광산지역 농산물, 토양 및 농경수의 중금속오염에 관한 연구)

  • 김미혜;소유섭;김은정;정소영;홍무기
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.4
    • /
    • pp.178-182
    • /
    • 2002
  • This study was conducted to estimate the status of heavy metal contamination in agricultural products (n = 280), soils (n = 280), and irrigation waters (n = 48) in abandoned mines & normal farm lands (n = 8). The samples were digested with acids, then analyzed fur the contents of lead (Pb), cadmium (Cd), copper (Cu), mercury (Hg), arsenic (As) and chrome (Cr) by an inductively coupled plasma spectrometer (ICP) and graphite- atomic absorption spectrophotometer (AAS). The contents of Hg were determined using a mercury analyzer. Abandoned mines had soils with higher contents of heavy metals except Cr and irrigation waters with higher heavy metals except Hg, compared to those of normal farmlands. The contents of heavy metals in agriculture products varied depending types of products. Agricultural products in abandoned mines generally showed with higher contents of heavy metals except Cu, compared to those of normal farmlands. There was no significant relationship in heavy metal contents between agricultural products and soils (p > 0.05). It is suggested that heavy metals of agricultural products and soils in abandoned mines should be continuously monitored.

Investigation of the groundwater contamination around landfill where slaughtered animals were buried

  • Bark, Jun-Jo;Jung, Hae-Sun;Woo, Jong-Tae;Lee, Sung-Sik
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.4
    • /
    • pp.459-467
    • /
    • 2006
  • This study was designed to investigate if there were groundwater contamination in 17 landfill where slaughtered animals were buried during the crisis of 2002 foot-and-mouth-disease (FMD) outbreaks in Gyeonggi province. From March to August 2005 groundwater was collected once a month from 17 sites, and examined with potential for hydrogen (pH), colour, turbidity, lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), copper (Cu), zinc (Zn) , iron (Fe), manganese (Mn) , aluminium (Al), nitrate-nitrogen $(NO_3-N)$, ammonia-nitrogen $(NH_3-N)$, microbial pathogen and Escherichia spp. In the examination of $NH_3-N$ which of the mean concentration was from not-detected (ND) to 0.05 mg/l. The range of $NH_3-N$ level was $0.3-24.1mg/{\ell}$. However, groundwater from four sites was to go beyond the drinking water quality standard (DWQS), i.e., the mean concentration of those were $15.5mg/{\ell}\;(site\;1),\;20.7mg/{\ell}\;(site\;9),\;24.1mg/{\ell}\;(site\;13)\;and\;10.6mg/{\ell}\;(site\;17)$. In the investigation of pH, colour and turbidity, all of the pH were below of DWQS (pH 5.8-6.6), but one site in color test and four sites in turbidity test were over the standard level. Among 9 metal ions examined, Mn was in excess of DWQS, and its concentration was $2.4mg/{\ell}$. Pb, Cd, Hg and As were not traced. The contents of Cu, Zn, Fe and Al were $ND-0.22mg/{\ell},\;0.01-0.05mg/{\ell},\;ND-0.05mg/{\ell}\;and\;0.03-0.16mg/{\ell}$, respectively. Escherichiae spp were not identified, but bacterial colonies were detected at 3 groundwater including 2 sites over the DWQS at the level of $491CFU/m{\ell}\;(site\;4)\;and\;217CFU/m{\ell}\;(site\;15)$.

Mineralogical and chemical characterization of arsenic solid phases in weath-ered mine tailings and their leaching potential (풍화광미내 고상 비소의 광물학적${\cdot}$화학적 특성 및 용출 가능성 평가)

  • 안주성;김주용;전철민;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.27-38
    • /
    • 2003
  • Arsenic contamination around Au-Ag mining areas occurs mainly from the oxidation of arsenopyrite which is frequently contained in mine tailings. In weathered tailings, oxidation of sulfide minerals typically results in the formation of abundant ferric (oxy)hydroxides or (oxy)hydroxysulfates near the tailings surface, and arsenic may be associated with these secondary precipitates. In this study, solid phases of arsenic in weathered tailings of some Au-Ag mines were investigated through the SEM/EDS and sequential extraction analyses. The stability of As solid phases and the leaching potential were assessed with the variation of pH and Eh conditions. Oxidation of sulfides in the tailings samples was indicated by depletion of S molar concentrations compared to As and heavy metals. Under XRD examinations, jarosite as an Fe-oxyhydroxysulfate was found in the tailings of Deokeum, Dongil and Dadeok, and scorodite as an As-bearing crystalline mineral was identified from Dadeok which has the highest concentration of As (4.36 wt.%). Beudantite-like phases and some Pb-arsenates were also found under SEM/EDS analysis, and most of As phases were associated with Fe-(oxy)hydroxides and (oxy)hydroxysulfates despite a few arsenopyrite from Samgwang and Gubong. Sequential extraction analysis also showed that As was present predominantly as coprecipitated with Fe hydroxides from Dongil, Dadeok and Myungbong (72∼99%), and as sulfides (58%) and Fe hydroxide-associated forms (40%) from Samgwang and Gubong. In the tailings leaching experiment, As was released with high amounts by the dissolution of As-bearing Fe(oxy)hydroxysulfates in the lowest pH (2.7) conditions of Deokeum, and by desorption under alkaline conditions of Samgwang and Gubong. Higher leaching rates of arsenite(+3) were found under acidic conditions, which pose a higher risk to water quality. Changes in pH and Eh conditions coupled with microbial processes could influence the stabilities of the As solid phases, and thus, time amendments or landfilling of weathered tailings may result in enhanced As mobilization.

OBSERVATION OF SPECTRAL CHARACTERISTICS FOR SOIL CONTAMINANTS

  • Choe Eun-Young;Kim Kyoung-Woong;Lee Sung-Soon;Chi Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.422-425
    • /
    • 2005
  • Spectral characteristics depending on soil constituents and their proportion in a soil were firstly studied for monitoring of soil contamination using hyperspectral remote sensing. The reflectance spectra of heavy metals in soils were investigated in the VIS-NIR-SWIR regions (400-2500 nm) to observe spectral variation as a function of constituents and concentrations. Commercial kaolinite soils mixed with lead, copper, arsenic, and cadmium were used as synthetic soil samples for spectral measurement. In case of copper, relatively spectrally active regions was observed with some band shift whereas other heavy metals had only simple spectral variations expected to be related to the sorption phase and the amount of metal onto kaolinite. The reflectance spectrum of each metal on kaolinite could be identified in VIS-NIR region.

  • PDF

Construction and Characterization of Multiple Heavy Metal-Resistant Phenol-Degrading Pseudomonads Strains

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1001-1007
    • /
    • 2003
  • Metal ions contamination may inhibit microorganisms involved in the biodegradation of organic compounds and affect biodegradation rates. Therefore, it is likely that bioremediation of xenobiotics-contaminated soils and waste will require inoculation with efficient biodegrading microbial communities, with capabilities of being resistant to heavy metals as well. Two different transconjugants (Pseudomonas sp. KMl2TC and P. aeruginosa TC) were constructed by conjugation experiments. Results on MIC, induction and growth inhibition strongly indicated that arsenic-resistant plasmid, pKM20, could be mobilized, and the newly acquired phenotype of pKM20 was not only expressed but also well regulated, resulting in newly acquired resistances to $As^{5+},\;As^{3+},\;and\;Sb^{3+} in\;addition\;to\;Cd^{2+},\;Zn^{2+},\;and\;Hg^{2+}$. The phenol- degradation efficiencies of Pseudomonas sp. KMl2TC were maintained significantly even at high heavy metal concentrations at which these efficiencies of P. aeruginosa TC were completely impaired. The results in this study on the effects of heavy metals on phenol degradation, especially after conjugation, are the first ever reported. All the results described in this study encourage to establish a goal of making "designer biocatalysts" which could degrade certain xenobiotics in the area contaminated with multiple heavy metals.

한국 및 중국산 산양삼의 중금속 오염도 측정

  • Kim, Jong-Yoon;Kim, Byung-Woo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.67-77
    • /
    • 2007
  • Objectives : Heavy metal contents in cultivated wild ginseng from Korea and China were evaluated for the safety purpose. Methods : Arsenic(As), cadmium(Cd), lead(Pb), mercury(Hg), copper(Cu), chromium(Cr), and selenium(Se) from the root, stem, and leaves of the Korean cultivated wild ginseng and the root of the Chinese cultivated wild ginseng were analyzed for the existence of heavy metal contents. Results : Most of heavy metals weren't detected in all the samples. Copper and lead were found in very minute volume and didn't reach the toxic concentration level of 10mg/kg. Samples used in the test were grown in non-contaminated areas, free from heavy metal contamination. Conclusions : Based on above results, cultivated wild ginseng from Korea and China are relatively safe from the heavy metal exposure. But for more rigorous quality control, an epidemiological survey using the samples from more diverse areas should be conducted.

Effect of the Atmospheric Exposome on the Skin (대기 중 엑스포좀이 피부에 미치는 영향)

  • Song, Mee;Baek, Ji Hwoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.185-191
    • /
    • 2021
  • Environmental pollution is defined as contamination of the earth's environment with materials which interfere with human health, quality of life, or the natural functioning of the ecosystem. Whenever a prolonged and repetitive exposure to environmental stressors exceeds the skin's normal defensive potential, there is a disturbance in the skin barrier function leading to the development of various skin diseases. Major air pollutants which affect the skin are polycyclic aromatic hydrocarbons, volatile organic compounds, nitrogen oxides, particulate matter, cigarette smoke, heavy metals and arsenic. Dermal uptake depends on the deposition of air pollutants on the skin surface, the composition of epidermal lipids, and the diffusion through the epidermis to the blood vessels.

Contamination and Risk Analysis of Heavy Metals in Korean Foods (국내식품의 중금속 오염과 위해성 분셕)

  • 이서래;이미경
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.4
    • /
    • pp.324-332
    • /
    • 2001
  • Foods constitute a large portion of heavy metal exposure toward general population and attract a deep concern with respect to assuring human health. This study summarized published data in Korea on the content, and dietary intake of heavy metals and assessed their risk potential in comparison with foreign data. An analysis for the yearly fluctuation of metal contents including arsenic, cadmium, mercury and lead by flood group (marine fishes, coastal shellfishes, freshwater fishes, cereal grains) exhibited a decreasing trend from the 1970s to the 1990s. When compared with domestic standards of heavy metals, their mean contents were below the limit and their maximum values seldom exceeded the limit. The data on the dietary intake of heavy metals by Koreans showed a decreasing trend from the 1980s to the 1990s. The average intakes offs and Hg were 6∼8% and those of Cd and Pb were 50∼80% of PTWI(provisional tolerable weekly intake), all of which were below the tolerance. As the extreme intakes of these metals may exceed the PTWI, a careful assessment for them may be necessary. Dietary intakes of Cd, Hg and Pb by Koreans lie in the mid-level among countries cited in the GEMS/Food monitoring data. As fishery foods are suspecious of contamination with Hg, Cd and As, and floods in general are with Pb, it is necessary to establish legal limits for these metals and monitor any progress of their contamination. Furthermore, overall assessment of exposure to heavy metals from all sources including floods, air, drinking water and occupation should be made in order to confirm the dietary risk factors and to assure the safety of food resources.

  • PDF

Investigation and Risk Assessment of Heavy Metals Contamination around an Abandoned Metal Mine in Korea

  • Lee, Jong-Wha;Kwak, Soon-Sun;Hong, Sung-Chul;Park, Sang-Il;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.456-464
    • /
    • 2010
  • Recently, heavy metals contamination of the agricultural soil and crops surrounding mining areas has been identified as one of the most serious environmental problems in South Korea. The Ministry of the Environment in Korea conducted a Preliminary National Environmental Health Survey (PNEHS) in abandoned metal mines in 2007. The priority for a subsequent detailed examination was ranked from the results of PNEHS. The studied mine which was ranked as being of the highest priority is located in the midwestern part of Korea and was operated from 1911 to 1985. In this study, the contamination levels of the heavy metals in the abandoned metal mine were investigated. From the results, the average daily dose (ADD), target hazard quotient (THQ) and target cancer risk of the heavy metals were evaluated. The concentration of arsenic (As) in all of the tailings from the mine was higher than its countermeasure standard of Korea. In particular, the highest concentration of As, 330 mg/kg, was up to 15 times higher than its countermeasure standard. The average concentration of As in agricultural soils was higher than the warning standard of Korea, and higher than its countermeasure standard at six sites. The average concentrations of the analyzed heavy metals in agricultural soil were below the warning standard, but concentrations of cadmium (Cd) and lead (Pb) at 4 sites were higher than its warning standard. The average concentration of As in surface water exceeded the warning standard of Korea. The value of the THQ of As for the tailings was higher than the health protection standard 1. The value of THQ of As for the farmlands was lower than the standard, while the hazard index (HI) of As was higher than the standard. The value of target cancer risk (TCR) of As, $6.44{\times}10^{-4}$, were higher than the health protection standard of a lifetime risk for TCR at $1{\times}10^{-6}$. This suggests that the residents around the metal mines are exposed to As pollution with a carcinogenic risk.