• 제목/요약/키워드: arsenic

검색결과 1,089건 처리시간 0.023초

음용수를 통한 비소 노출의 인체 안전성 평가 (Safety and Risk Assessment of Arsenic in Drinking Water)

  • 이무열;정진호
    • Toxicological Research
    • /
    • 제18권2호
    • /
    • pp.107-116
    • /
    • 2002
  • Arsenic (As) is a ubiquitous element found in several forms in foods and water. Although certain foods, such as marine fish, contain substantial levels of organic arsenic forms, they are relatively low in toxicity compared to inorganic forms. in contrast, arsenic in drinking water is predominantly inorganic and highly toxic. Chronic ingestion of arsenic-contaminated drinking water is therefore the major pathway posing potential risk to human hearth. since the early 1990s in Bangladesh ozone, arsenic exposure has caused more than 7,000 deaths and uncounted thousands shout symptoms of long-term arsenic poisoning. Significant portion of world populations are exposed to low to moderate levels of arsenic of parts per billion (ppb) to hundreds of ppb. As a consequence, the World Health Organization (WHO) and U.S. environmental health agencies, such as the Environmental Protection Agency (EPA) made arsenic their highest priority. Recently, the WHO, European Union (EU), and US. EPA lowered an acceptable level of 10 ppb for arsenic in drinking water In this article, various health effects of arsenic in drinking water were reviewed and the current status for risk assessment to regulate arsenic in drinking water was discussed.

비소 중독 (Arsenic Poisoning)

  • 김양호;이지호;심창선;정경숙
    • 대한임상독성학회지
    • /
    • 제2권2호
    • /
    • pp.67-71
    • /
    • 2004
  • Arsenic poisoning has three types of poisoning. First, acute arsenic poisoning is usually caused by oral intake of large amount of arsenic compound with purpose of homicide or suicide. Second, chronic arsenic poisoning is caused by inhalation of arsenic in the occupational setting or by long-term oral intake of arsenic-contaminated well water. Third, arsine poisoning occurs acutely when impurities of arsenic in non-ferrous metal react with acid. Clinical manifestation of acute arsenic poisoning is mainly gastrointestinal symptoms and cardiovascular collapse. Those of chronic poisoning are skin disorder and cancer. Arsine poisoning shows massive intravascular hemolysis and hemoglobinuria with acute renal failure. Exposure evaluation is done by analysis of arsenic in urine, blood, hair and nail. Species analysis of arsenic is very important to evaluate inorganic arsenic acid and mono methyl arsenic acid (MMA) separated from dimethyl arsenic acid (DMA) and trimethyl arsenic acid (TMA) which originate from sea weed and sea food. Treatment with dimercaprol (BAL) is effective in acute arsenic poisoning only.

  • PDF

오염원에 따른 토양 입경 별 비소의 오염특성 및 생물학적 접근성 평가 (Effects of Contamination Source and Particle Size on Arsenic Speciation and Bioaccessibility in Soils)

  • 권예슬;김은정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권5호
    • /
    • pp.89-97
    • /
    • 2017
  • In this study, we evaluated effect of particle size on arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from smelting and mining. Soils were partitioned into six particle size fractions ($2000-500{\mu}m$, $500-250{\mu}m$, $250-150{\mu}m$, $150-75{\mu}m$, $75-38{\mu}m$, <$38{\mu}m$), and arsenic solid-state speciation and bioaccessibility were characterized in each particle size fraction. Arsenic solid-state speciation was characterized via sequential extraction and XRD analysis, and arsenic bioaccessibility was evaluated by SBRC (Solubility Bioaccessibility Research Consortium) method. In smelter site soil, arsenic was mainly present as arsenic bound to amorphous iron oxides. Fine particle size fractions showed higher arsenic concentration, but lower arsenic bioaccessibility. On the other hand, arsenic in mine site soil showed highest concentration in largest particle size fraction ($2000-500{\mu}m$), while higher bioaccessibility was observed in smaller particle size fractions. Arsenic in mine site soil was mainly present as arsenolite ($As_2O_3$) phase, which seemed to affect the distribution of arsenic and arsenic bioaccessibility in different particle size fractions of the mine soil.

Arsenic Toxicity in Male Reproduction and Development

  • Kim, Yoon-Jae;Kim, Jong-Min
    • 한국발생생물학회지:발생과생식
    • /
    • 제19권4호
    • /
    • pp.167-180
    • /
    • 2015
  • Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity.

Environmental Source of Arsenic Exposure

  • Chung, Jin-Yong;Yu, Seung-Do;Hong, Young-Seoub
    • Journal of Preventive Medicine and Public Health
    • /
    • 제47권5호
    • /
    • pp.253-257
    • /
    • 2014
  • Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

비소 만성 노출의 건강영향에 대한 고찰 (Chronic Exposure to Arsenic and the Effects on Human Health)

  • 권정연;홍영습
    • 한국환경보건학회지
    • /
    • 제49권5호
    • /
    • pp.237-246
    • /
    • 2023
  • Background: Arsenic is a metalloid of public health significance due to its unique material properties and toxicity and the widespread pollution in the environment. Arsenic exists as inorganic arsenic and organic arsenic with distinct chemical properties. Its toxicity varies depending on the properties. Objectives: Although the carcinogenicity of arsenic has been identified, the various diseases that occur after acute and chronic exposure to arsenic are not yet clearly known. Methods: Research on the effects of chronic exposure to arsenic on human health was searched and the results were summarized. Results: It has been found that cancer occurs due to exposure to high concentrations of arsenic in areas with elevated exposure to arsenic, but research results have recently been presented on health effects caused by chronic exposure to low concentrations of arsenic. Cancers have also been identified to be related to inorganic arsenic, including skin cancer, lung cancer, and bladder cancer. Significant relationships with neurological diseases, cardiovascular diseases, and diabetes mellitus have been suggested as well. Conclusions: Our results suggest that it is necessary to evaluate the health impact on residents around abandoned metal mines and industrial complexes in South Korea.

Methylated Organic Metabolites of Arsenic and their Cardiovascular Toxicities

  • Bae, Ok-Nam;Lim, Kyung-Min;Noh, Ji-Yoon;Kim, Keun-Young;Lim, Eun-Kyung;Chung, Jin-Ho
    • Toxicological Research
    • /
    • 제24권3호
    • /
    • pp.161-167
    • /
    • 2008
  • Recently, arsenic-toxicity has become the major focus of strenuous assessment and dynamic research from the academy and regulatory agency. To elucidate the cause and the mechanism underlying the serious adverse health effects from chronic ingestion of arsenic-contaminated drinking water, numerous studies have been directed on the investigation of arsenic-toxicity using various in vitro as well as in vivo systems. Neverthless, some questions for arsenic effects remain unexplained, reflecting the contribution of unknown factors to the manifestation of arsenic-toxicity. Interestingly, very recent studies on arsenic metabolites have discovered that trivalent methylated arsenicals show stronger cytotoxic and genotoxic potentials than inorganic arsenic or pentavalent metabolites, arguing that these metabolites could play a key role in arsenic-associated disorders. In this review, recent progress and literatures are summarized on the metabolism of trivalent methylated metabolites and their toxicity on body systems including cardiovascular system in an effort to provide an insight into the future research on arsenic-associated disorders.

Health Effects of Chronic Arsenic Exposure

  • Hong, Young-Seoub;Song, Ki-Hoon;Chung, Jin-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • 제47권5호
    • /
    • pp.245-252
    • /
    • 2014
  • Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.

산성하천수중 비소제거에 관한 연구

  • 고임범
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.350-353
    • /
    • 2004
  • in order to develop a new technique for the removal of arsenic compoundsfrom acidified water, the removal of arsenic compounds by an acidophilic moss, Jungermannia vulcanicola Steph. was investigated in this study. The result of vial tests for arsenic removal is dependent on the biological activity of moss. The presence of phosphate inhibited the arsenic removal. And the acclimatization of moss by the media containing arsenic increased the its capability of arsenic remova.

  • PDF