• Title/Summary/Keyword: armoured slope structures

Search Result 2, Processing Time 0.015 seconds

Estimate of Wave Overtopping Rate on Armoured Slope Structures Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 경사구조물의 월파량 산정)

  • Moon Su Kwak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • In this study, the program was modified by adding the empirical formula of EurOtop (2018) to enable calculation of wave overtopping on armoured slope structures in the FUNWAVE-TVD model using the fully nonlinear Boussinesq equation. The validity of the modified numerical model was verified by comparing it with CLASH data and experiment data for the rubble mound structure. This model accurately reproduced the change in wave overtopping rate according to the difference in the roughness factor of the armoured block, and well reproduced the rate of decrease in wave overtopping rate due to the increase in relative freeboard. The overtopping rate of the armoured slope structures showed significant differences depending on the positioning condition of the armoured blocks. When Tetrapods were placed with regular positioning, the overtopping rate increased significantly compared to when they were placed with random positioning, and it was consistent with when they were placed with Rocks. Meanwhile, when rocks were placed in one row, the wave overtopping rate was greater than when rocks were placed in two rows, which is believed to be due to the influence of the roughness and permeability of the structure's surface.

Experiments for Amour Stability of Low Crested Structure Covered by Tetrapods (저 마루높이 구조물의 피복재 안정성 실험: Tetrapod 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.769-777
    • /
    • 2019
  • Low crested coastal structures such as detached breakwaters and submerged breakwaters (artificial reefs) have been commonly used as coastal protection measures. The armour units of these structures are unstable than those in non-overtopped structure cases. The stability of low crested structures armoured by rock has been suggested in existing studies. In this study, the stability of Tetrapods armour units on theses structures has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the armour stability on crest, front, and the rear slope has been investigated. Armour units were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the Tetrapods was proposed.