• Title/Summary/Keyword: areas

Search Result 36,678, Processing Time 0.06 seconds

A Study on Method of Citizen Science and Improvement of Performance as a Ecosystem Conservation and Management Tool of Wetland Protected Areas (Inland Wetland) - Focused on the Target of Conservation·Management·Utilization in Wetland Protected Area Conservation Plan - (내륙 습지보호지역의 생태계 보전·관리 도구로서 시민과학연구 방법론 및 성과 제고 방안 - 습지보호지역 보전계획의 보전·관리·이용 목표를 중심으로 -)

  • Inae Yeo;Changsu Lee;Ji Hyun Kang
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.450-462
    • /
    • 2023
  • This study suggested methodology of Citizen Science as a tool of ecosystem conservation and management to achieve Wetland Protected Area (WPA) Conservation Plan and examined whose applicability in 3 WPAs (Jangrok of Gwangju metropolitan city, Madongho of Goseong in South Gyeongsang Province, and Incheongang estuary of Gochang in North Jeolla Province). It consists of a) figuring out main interests and stakeholder or beneficiaries of WPA and their information demand based on conservation, utilization, and management target in the WPA Conservation Plan, b) conducting research activities to gain outcome to address stakeholder's demand, and c) returning the research outcome to citizen scientists and making diffusion to the society. Based on the suggested method and process, citizen scientists conducted ecosystem monitoring (plants including Invasive Alien Plants, terrestrial insects, traces of mammals, discovering unknown wetland). As a result, citizen scientists contributed to collecting species information of 16 plans, 43 species of terrestrial insects, 5 mammals including Lutra lutra (Endangered Species I) and Prionailurus bengalensis (Endangered Species II). The authors constructed and provided distribution map of Invasive Alien Plants, which included information of location and density which citizen scientists registered, for Environment Agencies and local governments who manage 3 WPAs to aid data-based ecosystem policy, In further studies, not only accumulating research data and outcomes acquired from citizen science to suffice the policy demands but also deliberate reviewing policy applicability and social·economic ripple effect should be processed for the suggested Citizen Science in WPA to be settled down as a tool of ecosystem conservation and management.

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.

Changes in Soil Physiochemcial Properties Over 11 Years in Larix kaempferi Stands Planted in Larix kaempferi and Pinus rigida Clear-Cut Sites (낙엽송과 리기다소나무 벌채지에 조성된 낙엽송 임분의 11년간 토양 물리·화학적 특성 변화)

  • Nam Jin Noh;Seung-hyun Han;Sang-tae Lee;Min Seok Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.502-514
    • /
    • 2023
  • This study was conducted to understand the long-term changes in soil physiochemical properties and seedling growth in Larix kaempferi (larch) stands planted in clear-cut larch and Pinus rigida (pine) forest soils over an 11-year period after reforestation. Two-year-old bare-root larch seedlings were planted in 2009-2010 at a density of 3,000 seedlings ha-1 in clear-cut areas that harvested larch (Chuncheon and Gimcheon) and pine (Wonju and Gapyeong) stands. We analyzed the physiochemical properties of the mineral soils sampled at 0-20 cm soil depths in the planting year, and the 3rd, 7thand 11th years after planting, and we measured seedling height and root collar diameter in those years. We found significant differences in soil silt and clay content, total carbon and nitrogen concentration, available phosphorus, and cation exchangeable capacity between the two stands; however, seedling growth did not differ. The mineral soil was more fertile in Gimcheon than in the other plantations, while early seedling growth was greatest in Gapyeong. The seedling height and diameter at 11 years after planting were largest in Wonju (1,028 tree ha-1) and Chuncheon (1,359 tree ha-1) due to decreases in stand density after tending the young trees. The soil properties in all plantations were similar 11 years after larch planting. In particular, the high sand content and high available phosphorus levels (caused by soil disturbance during clear-cutting and planting) showed marked decreases, potentially due to soil organic matter input and nutrient uptake, respectively. Thus, early reforestation after clear-cutting could limit nutrient leaching and contribute to soil stabilization. These results provide useful information for nutrient management of larch plantations.

Beyond Platforms to Ecosystems: Research on the Metaverse Industry Ecosystem Utilizing Information Ecology Theory (플랫폼을 넘어 생태계로: Information Ecology Theory를 활용한 메타버스 산업 생태계연구 )

  • Seokyoung Shin;Jaiyeol Son
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.131-159
    • /
    • 2023
  • Recently, amidst the backdrop of the COVID-19 pandemic shifting towards an endemic phase, there has been a rise in discussions and debates about the future of the metaverse. Simultaneously, major metaverse platforms like Roblox have been launching services integrated with generative AI, and Apple's mixed reality hardware, Vision Pro, has been announced, creating new expectations for the metaverse. In this situation where the outlook for the metaverse is divided, it is crucial to diagnose the metaverse from an ecosystem perspective, examine its key ecological features, driving forces for development, and future possibilities for advancement. This study utilized Wang's (2021) Information Ecology Theory (IET) framework, which is representative of ecosystem research in the field of Information Systems (IS), to derive the Metaverse Industrial Ecosystem (MIE). The analysis revealed that the MIE consists of four main domains: Tech Landscape, Category Ecosystem, Metaverse Platform, and Product/Service Ecosystem. It was found that the MIE exhibits characteristics such as digital connectivity, the integration of real and virtual worlds, value creation capabilities, and value sharing (Web 3.0). Furthermore, the interactions among the domains within the MIE and the four characteristics of the ecosystem were identified as driving forces for the development of the MIE at an ecosystem level. Additionally, the development of the MIE at an ecosystem level was categorized into three distinct stages: Narrow Ecosystem, Expanded Ecosystem, and Everywhere Ecosystem. It is anticipated that future advancements in related technologies and industries, such as robotics, AI, and 6G, will promote the transition from the current Expanded Ecosystem level of the MIE to an Everywhere Ecosystem level, where the connection between the real and virtual worlds is pervasive. This study provides several implications. Firstly, it offers a foundational theory and analytical framework for ecosystem research, addressing a gap in previous metaverse studies. It also presents various research topics within the metaverse domain. Additionally, it establishes an academic foundation that integrates concept definition research and impact studies, which are key areas in metaverse research. Lastly, referring to the developmental stages and conditions proposed in this study, businesses and governments can explore future metaverse markets and related technologies. They can also consider diverse metaverse business strategies. These implications are expected to guide the exploration of the emerging metaverse market and facilitate the evaluation of various metaverse business strategies.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.

Mobile Camera-Based Positioning Method by Applying Landmark Corner Extraction (랜드마크 코너 추출을 적용한 모바일 카메라 기반 위치결정 기법)

  • Yoo Jin Lee;Wansang Yoon;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1309-1320
    • /
    • 2023
  • The technological development and popularization of mobile devices have developed so that users can check their location anywhere and use the Internet. However, in the case of indoors, the Internet can be used smoothly, but the global positioning system (GPS) function is difficult to use. There is an increasing need to provide real-time location information in shaded areas where GPS is not received, such as department stores, museums, conference halls, schools, and tunnels, which are indoor public places. Accordingly, research on the recent indoor positioning technology based on light detection and ranging (LiDAR) equipment is increasing to build a landmark database. Focusing on the accessibility of building a landmark database, this study attempted to develop a technique for estimating the user's location by using a single image taken of a landmark based on a mobile device and the landmark database information constructed in advance. First, a landmark database was constructed. In order to estimate the user's location only with the mobile image photographing the landmark, it is essential to detect the landmark from the mobile image, and to acquire the ground coordinates of the points with fixed characteristics from the detected landmark. In the second step, by applying the bag of words (BoW) image search technology, the landmark photographed by the mobile image among the landmark database was searched up to a similar 4th place. In the third step, one of the four candidate landmarks searched through the scale invariant feature transform (SIFT) feature point extraction technique and Homography random sample consensus(RANSAC) was selected, and at this time, filtering was performed once more based on the number of matching points through threshold setting. In the fourth step, the landmark image was projected onto the mobile image through the Homography matrix between the corresponding landmark and the mobile image to detect the area of the landmark and the corner. Finally, the user's location was estimated through the location estimation technique. As a result of analyzing the performance of the technology, the landmark search performance was measured to be about 86%. As a result of comparing the location estimation result with the user's actual ground coordinate, it was confirmed that it had a horizontal location accuracy of about 0.56 m, and it was confirmed that the user's location could be estimated with a mobile image by constructing a landmark database without separate expensive equipment.

A Study on Estimation of Forest Burn Severity Using Kompsat-3A Images (Kompsat-3A호 영상을 활용한 산불피해 강도 산정에 관한 연구)

  • Minsun Yang;Min-A Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1299-1308
    • /
    • 2023
  • Forest fires are becoming more frequent and larger around the world due to climate change. Remote sensing such as satellite images can be used as an alternative or assistance data because it reduces various difficulties of field survey. Forest burn severity (differenced normalized burn ratio, dNBR) is calculated through the difference in normalized burn ratio (NBR) before and after a forest fire. The images used in the NBR formula are based on Landsat's near-infrared (NIR) and short-wavelength infrared (SWIR) bands. South Korea's satellite images don't have a SWIR band. So domestic studies related to forest burn severity calculated dNBR using overseas images or indirectly using the normalized difference vegetation index (NDVI) using South Korea's satellite images. Therefore, in this study, dNBR was calculated by substituting the mid-wavelength infrared (MWIR) band of Kompsat-3A (K3A) instead of the SWIR band in the NBR formula. The results were compared with the dNBR results obtained through Landsat which is the standard for dNBR formula. As a result, it was shown that dNBR using K3A's MWIR band has a wider range of values and can be expressed in more detail than dNBR using Landsat's SWIR band. Therefore, it is considered that K3A images will be highly useful in surveying burn areas and severity affected by forest fires. In addition, this study used the K3A's MWIR band images degraded to 30 m. It is considered that much better results will be obtained if a higher-resolution MWIR band is used.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Development of a Molecular Selection Marker for Bacillus licheniformis K12 (Bacillus licheniformis K12 균주 분자 선발 마커 개발)

  • Young Jin Kim;Sam Woong Kim;Tae Wok Lee;Won-Jae Chi;Woo Young Bang;Ki Hwan Moon;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.808-819
    • /
    • 2023
  • This study was conducted to develop a selection marker for the identification of the Bacillus licheniformis K12 strain in microbial communities. The strain not only demonstrates good growth at moderate temperatures but also contains enzymes that catalyze the decomposition of various polymer materials, such as proteases, amylases, cellulases, lipases, and xylanases. To identify molecular markers appropriate for use in a microbial community, a search was conducted to identify variable gene regions that show considerable genetic mutations, such as recombinase, integration, and transposase sites, as well as phase-related genes. As a result, five areas were identified that have potential as selection markers. The candidate markers were two recombinase sites (BLK1 and BLK2), two integration sites (BLK3 and BLK4), and one phase-related site (BLK5). A PCR analysis performed with different Bacillus species (e.g., B. licheniformis, Bacillus velezensis, Bacillus subtilis, and Bacillus cereus) confirmed that PCR products appeared at specific locations in B. licheniformis: BLK1 in recombinase, BLK2 in recombinase family protein, and BLK3 and BLK4 as site-specific integrations. In addition, BLK1 and BLK3 were identified as good candidate markers via a PCR analysis performed on subspecies of standard B. licheniformis strains. Therefore, the findings suggest that BLK1 can be used as a selection marker for B. licheniformis species and subspecies in the microbiome.