• Title/Summary/Keyword: architecture exploration

Search Result 169, Processing Time 0.027 seconds

A Resource Information Model for High Performance GRID Environemnts (고성능 그리드 환경을 위한 자원정보모델에 관한 연구)

  • Kim Hie-Cheol;Lee Kang-Woo;Lee Yong-Doo;Cho Sae-Hong
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.167-178
    • /
    • 2001
  • For high performance Grid environments, an effective GIS(Grid Information System) should be adopted. In the design of GIS architecture, its grid resource information model provides a key basis. This paper presents our study on the exploration of a high performance grid resource information model. According the exploration, we identified the followings. The resource information model should clearly address the issues of relation descriptions as well as resource descriptions, issues related to scheduling support, the issue of decoupling the expression model of resource information from data repository models, and finally the issue of decoupling user-level resource descriptions from system-level resource descriptions. Based on the proposed conceptual organization of resource information models, analysis result for the existing resource information models are presented.

  • PDF

Model Validation of a Fast Ethernet Controller for Performance Evaluation of Network Processors (네트워크 프로세서의 성능 예측을 위한 고속 이더넷 제어기의 상위 레벨 모델 검증)

  • Lee Myeong-jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.92-99
    • /
    • 2005
  • In this paper, we present a high-level design methodology applied on a network system-on-a-chip(SOC) using SystemC. The main target of our approach is to get optimum performance parameters for high network address translation(NAT) throughput. The Fast Ethernet media access controller(MAC) and its direct memory access(DMA) controller are modeled with SystemC in transaction level. They are calibrated through the cycle-based measurement of the operation of the real Verilog register transfer language(RTL). The NAT throughput of the model is within $\pm$10% error compared to the output of the real evaluation board. Simulation speed of the model is more than 100 times laster than the RTL. The validated models are used for intensive architecture exploration to find the performance bottleneck in the NAT router.

Daylighting Performance based Parametric Design focused on the Office Building at the conceptual phase of BIM (설계 초기 단계 BIM 형상정보 파라메트릭 연동을 통한 오피스 실내조도 분석)

  • Park, Jung-Dae;Jo, Chan-Won;Jeon, Min-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.475-481
    • /
    • 2019
  • The importance of performance-based design feedback is being emphasized when it comes to the potential impact that affects all the lifecycle of the building. However, the latency and disconnection of domain expert in the sector of AEC/FM remain current obstacles between design and performance feedback. It is hard to utilize performance feedback information for design exploration and support design decision making during the conceptual phase of design. Using parametric design, this paper proposes various design alternatives from a set of rules and constraints defined by algorithms for the geometric configurations of an Office Building. A Building Performance Analysis (BPA) was to developed using Autodesk® Revit® 2019 which integrates Autodesk® Green Building Studio® to predict its sufficient daylighting conditions of the LEED v4's Daylighting Autonomy (DA). The parametric-based performance feedback of this study outlines potential design improvements for further exploration in application to the early design process.

An Analysis of the Experience of Users of National Ecological and Cultural Exploration Routes Using Big Data - A Focus on the Buan Masil Road and Gunsan Gubul Road - (빅데이터를 활용한 국가생태문화탐방로 이용자의 경험분석 - 부안 마실길과 군산 구불길을 대상으로 -)

  • Lee, Hyun-Jung;An, Byung-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.151-166
    • /
    • 2020
  • Various experience keywords were derived through text mining analysis of two National Ecological and Cultural Exploration Routes. The results of this study were drawn as follows: The interaction between the experience keywords was analyzed by the degree centrality, closeness centrality, and betweenness centrality value calculated through the centrality analysis of the research site experience keywords. First, In the text mining analysis, 'walking' appeared as the top keyword in the I, II, and III periods of the two target areas. The keywords related to the stay type of "rental cottage" and "recreational forest" were derived for Masil Road in relation to accommodation facilities. However, the keywords related to the accommodation were not derived in Gubul Road. Second, as a result of the centrality analysis, the degree centrality of the keywords "walking", "sea", "look", "salt flats" of Masil Road and "walking", "lake" and "park" of Gubul Road was high. The keywords located at the center are "walking" and "sea" in the Masil Road, and "walking" in the Gubul Road. As an influential keyword, Masil Road is "experience" and Gubul Road is "history". Third, According to the results of the analysis, the keywords that appeared at the top of the Gubul Road are derived from the keywords related to the 1 ~ 8 course, and it is judged that the visitors are visiting the 1 ~ 8 course trail evenly. However, the Gubul Road only appears in the top keyword only for a few courses. Through this, it seems that three courses are intensively visited as the main course of 6 Gubul Road, 6-1 Gubul Road, and 8 Gubul Road.

Study on Behavior of Slender Bodies in Waves (세장체의 파랑중 거동에 대한 실험에 관한 고찰)

  • Lee, Seung Jae;Kang, Donghoon;Jo, Hyo Jae;Shin, Da Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.29-35
    • /
    • 2013
  • The exploration areas for maritime resources such as oil and natural gas have gradually moved to deep sea areas. It has become difficult to use existing fixed marine structures, which are very costly to build, because that have reached the uppermost economic limit. Therefore, floating marine structures and flexible marine structures are preferred. In particular, slender bodies such as risers and pipes are important parts of ocean depth marine structures. These slender bodies have more flexible structural characteristics in deep water areas because their overall length becomes longer and thediameter/length slenderness ratio gets smaller. In addition, the dynamic behavior of slender bodies becomes complicated as external forces such as tides and waves act on it directly. In this study, in order to solve these problems, we performed model tests in a 2-D wave basin using flexible slender bodies with different modulus of elasticity values. As a result, we compiled statistics and compared the behaviors of flexible slender bodies with respect to the effect of the modulus of elasticity. We expect that the results could be used as reference data for the design of structures with flexible elements.

Robotics in Construction: State-of-Art of On-site Advanced Devices

  • Balzan, Alberto;Aparicio, Claudia Cabrera;Trabucco, Dario
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.95-104
    • /
    • 2020
  • Recently, robotic technologies have significantly improved, bringing considerable enhancements in many sectors; the main objective of this paper is to figure out if these innovations have also involved the building industry. To achieve this purpose, it has been considered crucial to first reshape and clarify some concepts, incorporating a much more flexible understanding of the term "robot", as well as the formulation of its future potential. Subsequently, it has been carried out an analysis of the various advanced devices that are currently available to be employed in the construction processes; the review includes a thorough classification of construction robots, divided into 18 families reflecting their purpose of use, and a dissection based on the term used to define them. The attention has been focused on the most updated and recent robots and, in their absence, on the most advanced machines prevailing. This operation has been achieved taking into account the development history of construction robots, as well as the analyses and classifications previously conducted, reconsidering them according to the just mentioned reflections. Furthermore, an in-depth exploration of the exoskeletons, as well as on a sophisticated robot recently developed by Schindler Group has been executed.

Investigation of jack-up leg extension for deep water operations

  • Welaya, Yousri M.A.;Elhewy, Ahmed;Hegazy, Mohamed
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.288-300
    • /
    • 2015
  • Since the first jack-up was built, jackups have become the most popular type of mobile offshore drilling unit (MODU) for offshore exploration and development purposes in shallow water. The most pivotal component of the jack-up unit is the leg, which can directly affect the global performance of the unit. In this paper, an investigation into extending the length of the jack up leg is carried out in order to study the enhancement of the rig capability to drill in deeper water approaching the range of the Semisubmersible Drilling Unit (SSDU) (300-1000ft). A study of the performance of a deep-water jack-up unit is performed with different leg lengths. Typical leg scantling dimensions and identical external loads are assigned, and then a detailed Finite Element Analysis (FEA) model is created in order to simulate the jack-up leg unit's structural behavior. A Multi-point Constraint (MPC) element together with the spring element is used to deal with the boundary conditions. Finally, a comparative analysis for five leg lengths is carried out to illustrate their performance, including the ultimate static strength, and weight.

A Study on Characteristics of Ecological Expression in Shigeru Ban's Architecture - Focus on the Paper Tube Architecture of Hanover Expo 2000 Japan Pavillion (시게루 반의 건축에 나타나는 생태적 표현특성에 관한 연구 - 하노버 엑스포 일본관의 종이튜브건축을 중심으로 -)

  • Cho Hyeon-Mi
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.6 s.53
    • /
    • pp.75-85
    • /
    • 2005
  • The 1990s' characteristics of Ecological architectural design would be choosing the traditional materials of the region's, the creative usage of construction methods, the expressive properties of materiality in spatial forms and so on. The overall organic relationships between human and men-made environments have been sublimated by the expression of poetic qualities of perception in ecological man-made environment. Hannover Expo 2000 did set up an opportunity to exposure the fact that Ecological Architecture will be the major trend in 21st Century's Architecture and its exploration in possible ways will be the most important matter. Japanese Architect Shigeru Ban's Japan Pavilion in this Exposition has shown the meaning of this turning point in Ecological Architectural thinking, which would be recognized as the convincing possibilities for the future architectural practice to the public. Thus this research has the purpose to study the meaning of the constructing action in Shigeru Ban's recent architectural space-making practice with the Paper Tube structural system. The creative foundation of Shigeru Ban's own method to apply paper tube -that is impossible material to pre-estimate- and other materials in the creation of architectural spaces would be searched in this paper. The period to this research will be between 1990s and 2000s, and the subject will be the experimental architecture of Shigeru Ban. The range of this research Is including the process of development in the paper tube architectural structure and joint system. This study would contribute to understand the intrinsic value of Shigeru Ban's Ecological architecture of the paper tube system, in which the relationship between the regional environment and human regaining the ecological abiogenesis.

Control Software of SQEUAN (SED camera for the QUasars in EArly uNiverse)

  • Lee, Hye-In;Ji, Tae-Geun;Park, Won-Kee;Kuehne, John;Im, Myungshin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.34.3-35
    • /
    • 2017
  • Spectral energy distribution camera for QUasars in EArly uNiverse (SQUEAN) is a successor of Camera for Quasars in EArly uNiverse (CQUEAN) which was developed by Center for the Exploration of the Origin of the Universe and operated at the 2.1 m Otto Struve Telescope in the McDonald Observatory, USA, since 2010. The software of SQUEAN controls a science camera, a guiding camera, and a filter wheel, and communicates with the telescope control system (TCS). It has been constantly revised and modularized according to the upgrades of the TCS and the hardware changes. Recently we have implemented the stable network communication and the semi-automatic focusing modules to enhance observational convenience. In this presentation we describe the current status of the SQUEAN control software and introduce a software architecture which is optimized on efficient astronomical observations.

  • PDF

The Preliminary Design Guideline for Tall Building: Exploration of Planning Factors & Building Factors

  • Choi, Yong Sun
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Every year new tall buildings are being conceived, designed, and built with new schemes. Thus it is important to explore the factors that affect tall building design. Thus it is important to explore the tall building design factors. The planning and design of tall buildings require different criteria than those that exist in regular size buildings. Tall buildings are uniquely expressed by their structural systems where exterior esthetic and requirements of space drive the form and composition of the structural systems. Therefore the exploration of design factors is the key to achieve optimum building systems. Optimization as mentioned here is associated with the efficiency of the different building systems. To achieve an optimal system, there is a need for an understanding of the factors that affect on overall tall building design such as planning module, building function, lease span, floor-to-floor-height, building height (aspect ratio), structural system, environmental systems. In this paper a statistical approach will be used and will be based on data collected from the practice through a rigorous survey taken. This information is tabulated and analyzed. The major target of investigation will be lease span related to space requirement in the tall building planning. Factors related to lease spans, such as function, floor-to-floor height, planning module, building height, overall plan dimension, and plan ratio (building geometry), will be looked at carefully. IN conclusion, this approach of optimization can introduce a preliminary design guideline for tall building projects. The purpose of the paper should shed some light on the optimum tall building design criteria.