• Title/Summary/Keyword: architectural glass

Search Result 212, Processing Time 0.024 seconds

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

Effects of Corrugated GFRP Shear Connector Width and Pitch on In-plane Shear Behavior of Insulated Concrete Sandwich Wall Panels (CSWP) (파형 GFRP 전단연결재의 폭 및 너비에 따른 중단열 벽체의 면내전단거동)

  • Jang, Seok-Joon;Oh, Tae-Sik;You, Young-Chan;Kim, Ho-Royng;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.421-428
    • /
    • 2014
  • This paper describes the experimental results of insulated concrete sandwich wall panels (CSWP) with corrugated glass fiber-reinforced polymer (GFRP) shear connectors under in-plane shear loading. Corrugated GFRP shear connectors were used to improve the thermal property of insulated CSWP and to achieve composite action between the interior and exterior concrete wall panels. Test specimens were consist of three concrete panels with two insulation layers between concrete panels and middle concrete panels was loaded in the direction of gravity. To evaluate the effects of insulation types (extruded polystyrene, XPSS and expanded polystyrene, EPS), shear connector pitch (300 and 400 mm) and width (10 and 15 mm) on in-plane shear behavior of insulted CSWP, failure mode and shear flow-average relative slip relationship of specimens were investigated. Test results indicate that the bond stress between concrete panel and insulation is considerable initially. Especially in case of insulated CSWP without shear connector, initial stiffness of CSWP with XPSS is superior to that of CSWP with EPS. The shear connector's contribution to in-plane shear performance of insulated CSWP depends on the type of insulation.

Seismic Performance of Circular RC Columns Retrofitted Using Ductile PET Fibers (고연성 PET 섬유로 보강된 철근콘크리트 원형 기둥의 내진성능)

  • Vachirapanyakun, Sorrasak;Lim, Myung-Kwan;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.289-298
    • /
    • 2016
  • An experimental research was performed using fibers for the purpose of retrofitting existing reinforced concrete circular columns. Glass fiber (GF) and polyethylene terephthalate (PET) were used as well as combined GF+PET (HF). PET has high tensile strength (over 600 MPa) and high ductility (about 15%), but has very low elastic modulus (about 1/6 of GF). A total of four columns was tested against laterally applied reverse cyclic load: control column, GF-, PET-, and HF-strengthened columns. All columns retrofitted using fibers demonstrated improved moment capacity and ductility. Moment capacity of GF-, PET-, and HF-strengthened columns was 120%, 107%, and 120% of the control column, respectively. Drift ratio of all retrofitted columns also increased by 63 ~ 83% over the control column. The final failure mode of the control column was main bar buckling. The final failure mode of the GF- and HF-strengthened columns was GF rupture while that of the PET-strengthened column was main bar rupture in tension. No damage was observed for PET at the ultimate stage due to excellent strain capacity intrinsic to PET. Current test results indicate that PET can be effectively used for seismic retrofit of RC columns. It is noted that the durability characteristics of PET needs to be investigated in the future.

A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window (창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구)

  • Lee, Jang-bum
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

Evaluation of Physical Properties and Material Characterization for Structural Frame at the Stained Glass Windows to Gongju Jeil Church of the Registered Cultural Heritage in Korea (국가등록문화재 공주제일교회 스테인드글라스 구조재의 재질특성과 물성 평가)

  • Bo Young Park;Hye Ri Yang;Chan Hee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.103-114
    • /
    • 2023
  • The Christian Museum of Gongju Jeil Church was first built in 1931 and was largely damaged during the Korean War, but the walls and chimneys have been preserved. This building has a high architectural values in that the chapel was reconstructed in 1956, and maintains its original form through repair of damaged parts rather than new construction. The stained glass windows were as installed in 1979 and has a great significance in the Dalle de Verre method using lump glass. However, some of the stained glass damaged partially, such as various cracks and splits, and vertical and horizontal cracks in the joint fillers of supporting the colored glass. As the structural materials of the stained glass window, an iron frame and cement mortar filled with it were used, and corrosion of iron, cracking of mortar and granular decomposition appear partially due to weathering. In the joint fillers, the content of Ca and S is very high, indicating that gypsum were used as admixtures, and the gypsums grow in a rhombohedral and forms a bundle, which is investigated to have undergone recrystallization. As a result of modeling the ultrasonic velocity at the joint fillers, the left and right windows at the entrance show relatively weak in the range of 800 to 1,600m/s, and the lower right corner of the altar window and the upper left corner of the center window were also 1,000 to 1,800m/s, showing relatively low physical properties. And gypsums produced during the neutralization of lime mortar were detected in the joint fillers and contaminants on the surface. Such salts may cause damage to the joint material due to freezing and thawing, so appropriate preventive conservation is required. Also, since various damage types are complexly appearing in stained glass window and joint filler, customized conservation treatment should be reviewed through clinical tests.

The Meaning of "modern style (hyundae-sik)" in Related Documents of the ROK Office in the 1950s (1950년대의 한국에서 신축 정부청사 관련 문건에 나타난 "현대식"의 의미)

  • Lee, Sumin;Woo, Don-Son
    • Journal of architectural history
    • /
    • v.27 no.5
    • /
    • pp.17-26
    • /
    • 2018
  • In 1961, the Republic of Korea's first newly-constructed government building was completed. The government building, as ROK office, was erected as a twin with the USOM office in Sejong-ro. The reason why the ROK office and the USOM office were erected as a twin building is that the two offices were part of Foreign Operation Administration's Seoul Buildings Project in 1954. Within the project, the FOA office and the ROK office were rarely separated, and naturally, the ROK office was built according to the US standards. The planning, design, and construction phases which led by the US government were involved in the US architecture, engineering-construction companies. Because those AEC companies were familiar with the US technology and standards. In the phase of construction, Korean companies took part in the process under the supervise of Vinnell Corporation. The US expected to transfer its 'modern' and 'developed' technology through this process. The completed ROK office was widely known as the 'modern style (hyundae-sik)' building, which was body forth as glasses and new facilities. These factors were what the US emphasized for exporting architecture. The modifier, 'modern style (hyundae-sik)', given to the ROK office in the 1950s was a synonym for any new feeling that had never been seen hitherto. The newness of the ROK office, the 'modern style (hyundae-sik)' building, was specified as materials and facilities that indicates modern technology while in the absence of adequate knowledge.

The 'Plastic Architecture' of De Stijl, Its Utopian Vision (드 스틸의 조형적 건축, 그 유토피안 비전)

  • Yun, Nan-Jie
    • The Journal of Art Theory & Practice
    • /
    • no.9
    • /
    • pp.151-170
    • /
    • 2010
  • As an art group, De Stijl (1917-1931) led a total art movement encompassing painting, sculpture, design, and architecture. Among these, architecture, as a model of the total art pursued by the group, was encapsulated by the term 'plastic architecture.' The term reflects architecture's shared features with plastic art, especially its pictorial characteristics. Firstly, De Stijl architecture shares geometric form with painting. Assembled in simple, clear and rational structures, the geometric forms signified universal forms, and extended the pictorial experimentation that Mondrian exercised through Neo-Plasticism to architecture. Constructed with colour fields made of concrete wall, De Stijl architecture is geometric abstract painting embodied in space. Together with such pictorial characteristics, large plate glass windows, narrow window frames, and cantilever structure minimize the building's visual weight. De Stijl architecture, which appears suspended in the air, is an architectural version of the abstract paintings of the era that revealed unknown spaces beyond perspective. De Stijl architecture is also an 'open' architecture, where the units placed as if radiating from the center form relations with each other flexibly and organically. The observer in such a space is encouraged to experience space within time, as his/her physical and visual mobility and extension are maximized. De Stijl architecture is an example of how the time-space continuum, represented within picture frame through Cubism, Futurism, and abstract art, can be realized in space. By transforming the ideal space of painting into real space in this way, 'plastic architecture' turned out to be an architectural manifestation of the utopianism of the era, aimed at building a society in 'perfect harmony.' However, such rationalism and universalism are not free from the violence of totalization that deletes various differences. This is evident in the history that followed as the geometric form of architecture and urban planning proliferated across the globe, engulfing the diverse natural landscapes and local cultures.

  • PDF

An Experimental Study on the Effective Strain of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (FRP로 보강된 철근콘크리트 보의 유효 변형률 예측에 대한 실험적 연구)

  • Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The shear failure modes of FRP strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are externally wrapped with FRP composites, many beams fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the effective strain of the FRP must be blown. This paper presents the results of an experimental study on the performance of reinforced concrete beams externally wrapped with FRP composites and infernally reinforced with steel stirrups. The main parameters of the tests were FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continues sheets or strips). The experimentally observed effective strain of the FRP was compared with the strain calculated using a proposed method.

A Comparative Study of the Houses of Mies van der Rohe and Le Corbusier (미이스 반 데르 로에 주택과 르 꼬르뷔제 주택의 비교 연구)

  • 김용립
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2004
  • There are probably no architects of the 20th Century who had more influence on modern architecture than Mies van der Rohe and Le Corbusier. Although the two architects share one thing in common, namely, both are master of modernism, each has developed unique architecture of his own. The objective of this study is to investigate the characteristics of their works through a comparison analysis of the Ideas, design principles and architectural language reflected in the works, focusing on the houses. this study will also aim to provide a foundation for a new design that harmonizes the design principles and architectural language of the two. Through the study the following common points and differences were found between the houses of the two. A) Common points: Both architects avoided ornamentation In houses while placing weight on the functions of houses and they tried to plan rational floor plans by separating the wall from the structure. B) Differences: \circled1 The houses of Mies express the structure in a straight forward manner, while those of Corbusier are formative houses focusing more on shapes. \circled2 The shapes of the houses of Mies are limited to basic shapes, quadrangle while those of Corbusier employ various geometric curves. \circled3 Using steel and glass, the houses of Mies are light and transparent. On the contrary, using concrete, the houses of Corbusier are somewhat bulky with Three-dimensional changes. \circled4 The houses of Mies show the value of moderation based upon the classical principles of design, while the houses of Corbusier show the value of moderation based upon geometry. \circled5 The houses of Mies feature horizontal intoners with flexibility. However, Corbusier's houses have vertical interiors with some changes in the cross sections. \circled6 In terms of material, the interiors of Mies' houses employ materials with various tones and textures, while interiors of Corbusier's houses are painted in simple white. Summing up these characteristics, it could be said that the houses of Mies have logical and rational beauty, whereas the houses of Corbusier have more emotional beauty.

Development of Semi-Incombustible Composite Insulating Board Containing Pine Leaf Powder and Vermiculite (송엽분과 질석을 포함한 준불연 단열복합보드의 개발)

  • Cheong, Chang Heon;Yoo, Seok Hyung
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.27-34
    • /
    • 2018
  • A Semi-Incombustible Composite Insulation Board (SICIB) that can be applied to building construction and ships was developed. The SICIBs comprised of pine leaf powder, vermiculite. The incombustibility, semi-incombustibility, and U-factor of the developed SICIBs were measured. The incombustibility of the each SICIB was determined by the proportion of combustible flexible binder and pine leaf powder. SICIB satisfied the incombustibility test without a combustible flexible binder and pine leaf powder. In addition, SICIB with 6% of pine leaf ensured its semi-incombustible performance. A combustible flexible binder or pine leaf powder over 6% failed the fire-resistant performance of SICIB. In addition, SICIBs with incombustible/semi-incombustible finishing and a 200 mm insulating layer (glass wool and sprayed poly urethane foam) met the U-factor of an external wall for buildings described in the Korean building code.