• Title/Summary/Keyword: aramid fiber

Search Result 172, Processing Time 0.024 seconds

Preparation and Characteristics of Poly(m-phenyleneisophthalamide)/Poly Amic Acid Blended Film (m-Aramid/PAA 블렌딩 필름의 제조 및 특성)

  • Jisu Lee;Ayoung Jang;Ji Eun Gwon;Seung Woo Lee;Sang Oh Lee;Jaewoong Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.221-230
    • /
    • 2023
  • Meta-aramid and polyamic acid were separated and the manufactured films were analyzed for their integration and logarithmic properties. The miscibility of meta-aramid and polyamic acid was analyzed by Fourier transform infrared spectroscopy and scanning electron microscopy. Using calorimetric analysis and differential scanning calorimetry, the storage of meta-aramid and polyamic acid, indicated on the right side of the column, was analyzed. It was confirmed that the initial thermal resistance occurs because the polyamic acid is accounted for in the meta-aramid, and the glass transition temperature and persistence phenomenon are explained.

Strengthening Effects of Slabs by Aramid Fiber Sheet (아라미드섬유 쉬트에 의한 슬래브의 보강효과)

  • Yeon, Kyu-Seok;Kang, Young-Sug;Kim, Hyung-Woo;Lee, Youn-Su;Kim, Nam-Gil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.105-113
    • /
    • 1999
  • This study was conducted to evaluate the structural behaviors of Aramid fiber sheet reinforced slabs. Seven concrete slabs with $45{\times}8.5{\times}200cm$ were made for this experiment one slab with out being reinforced completely loaded until failure and the maximum load was obtained from this test. 70% of the maximum load was applied to 3 Aramid fiber sheet reinforced slabs after cracking and to the rest of 3 Aramid fiber sheet reinforced slabs without loading and cracking. Test results shows that maximum loading flexural rigidity and ductility for the Araimid fiber sheet reinforced slabs after initial cracking are similar as those for the Armied fiber sheet reinforced slabs without loading and cracking.

Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer (아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성)

  • Ahn, Dajeong;Choi, Chulhoon;Lee, Jaewoong;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.

A Study on the Impact Resistance of Concrete by Reinforcement Condition of Aramid Fiber (아라미드 섬유의 개질이 모르타르의 내충격 성능에 미치는 영향 검토)

  • Kim, Tae-Soo;Kim, Gyu-Yong;Jeon, Young-Seok;Nam, Jeong-Soo;Shin, Kyoung-Su;Jeon, Joong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.219-220
    • /
    • 2011
  • The research is for building safety by using fiber reinforced concrete against impact load. The aim of this study is to evaluation of Impact Resistance of mortar by Reinforcement Condition of Aramid Fiber(fiber length, fiber surface treatment, fiber contents, hyrid reinforcement with steel fiber). Thus, the results indicate that it can improve mix condition and impact resistance by fiber surface treatment.

  • PDF

Surface Modification Effect and Mechanical Property of para-Aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Myung-Soon;Kim, Sam-Soo;Choi, Jae-Young;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • para-Aramid fibers were treated by low-temperature plasma to improve the adhesion. The surface of para-aramid fibers were treated with gaseous plasma of several discharge power and treatment time in oxygen gas at 1Torr pressure. The treated fibers at low-temperature plasma were taken oxygen-containing functional groups and micro-crator on the surface. The modified fibers were measured by dynamic contact angle analyzer and XPS(X-ray photoelectron spectroscopy). The Interfacial adhesion properties of aramid fabric and polyurethane resin were determined by T-peel test. The surface of aramid fibers were observed by FE-SEM photographs. It was found that surface modification and chemical component ratio of the aramid fibers were improved wettability and adhesion characterization.

The FSI Analysis Evaluation of Strength for the Wind Turbine Rotor Blade Improved by the Aramid Fiber (아라미드섬유 보강 풍력발전기 로터 블레이드의 연성해석 강도평가)

  • Kim, Seok-Su;Kang, Ji-Woong;Kwon, Oh-Heon
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.17-23
    • /
    • 2015
  • Because of the energy resources shortage and global pollution, the wind power systems have been developed consistently. Among the components of the wind power system, the rotor blades are the most important component. Generally it is made of GFRP material. Recently, GFRP material has been replaced by CFRP composite material in the blade which has an aerodynamic profile and twisted tip. However the failures has occurred in the trailing edge of the blade by the severe wind loading. Thus, tougher material than CFRP material is needed as like the aramid fiber. In this study, we investigated the mechanical behaviors of the blade using aramid fiber composites about wind speed variation. One-way FSI (fluid-structure interaction)analysis for the wind rotor blade was conducted. The structural analyses using the surface pressure loading resulted from wind flow field analysis were carried out. The results and analysis procedure in this paper can be utilized for the best strength design of the blade with aramid fiber composites.

Influence of Stacking Sequence on Carbon Fiber/Aramid Fiber Hybrid Composite (탄소섬유/아라미드섬유 하이브리드 복합재료의 적층 순서의 영향 평가)

  • Hyeonho Lee;Seoyeon Bae;Sungbi Lee;Myoung-Gyu Lee;Wonjin Na
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.383-387
    • /
    • 2023
  • Carbon fiber-reinforced composites have excellent mechanical properties. However, the fracture toughness is a disadvantage due to brittle failure mode. The fracture toughness can be enhanced using hybridization with large-elongation fibers. In this study, polyamide (aramid) fibers are hybridized with carbon fiber with various stacking sequences. As a result, the Izod impact strength was enhanced by 63% with 25% aramid fiber hybridization. It is also shown that there is an optimal point in laminated composite hybridization, [CF/CAF2/CF]s stacking sequence.

An Experimental Study on Shear Strengthening of the R/C Deep Beams Using Carbon and Aramid Fibers (탄소 및 아라미드섬유를 이용한 철근콘크리트 깊은 보의 전단보강에 관한 실험적 연구)

  • Jo, Byung-Wan;Kim, Young-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.56-64
    • /
    • 1999
  • An experimental study was carried out to examine the structural behavior of reinforced concrete deep beams strengthened with aramid fiber sheets, carbon fiber sheets and plates, and to propose the reasonable strengthening method for the deteriorated R.C. deep beams. Results show that the most significant differences in behavior of reinforced concrete deep beams strengthened with fiber sheet and plate were mainly due to various fiber orientations and anchorage. Deep beams diagonally strengthened with carbon fibers show better performance compared with those of vertically, horizontally strengthened specimens and produce the increase in the shear resistance through the redistribution of internal forces after the initial cracks occur. However, strengthened deep beams without anchorages might show unreasonable, brittle peeling-off failure of fiber reinforcements.

  • PDF

Transverse permeability measurement of a circular braided preform in liquid composite molding

  • Chae, Hee-Sook;Song, Young-Seok;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • In liquid composite molding (LCM), composites are produced by impregnation of a dry preform with liquid resin. The resin flow through the preform is usually described by Darcy's law and the permeability tensor must be obtained for filling analysis. While the resin flow in the thickness direction can be neglected for thin parts, the resin flow in the transverse direction is important for thicker parts. However, the transverse permeability of the preform has not been investigated frequently. In this study, the transverse permeability was measured experimentally for five different fiber preforms. In order to verify the experimental results, the measured transverse permeability was compared with numerical results. Five different fiber mats were used in this study: glass fiber woven fabric, aramid fiber woven fabric, glass fiber random mat, glass fiber braided preform, and glass/aramid hybrid braided preform. The anisotropic braided preforms were manufactured by using a three dimensional braiding machine. The pressure was measured at the inlet and outlet positions with pressure transducers.

Dyeing of meta-Aramid Fabric with Temporarily Solubilized Reactive Disperse Dyes (일시적 수용성 반응성 분산염료를 이용한 메타 아라미드 섬유의 염색성 연구)

  • Lee, Yeon Ju;Lee, Jung Jin
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.262-270
    • /
    • 2013
  • Temporarily solubilized reactive disperse dyes containing ${\beta}$-sulfatoethylsulfonyl group were applied to 100% meta-aramid knitted fabric and their dyeing properties were investigated. Reactive disperse dyes showed relatively high K/S values on meta-aramid fabric when compared with conventional disperse dye or reactive dye, which showed very low K/S values. Color yields of reactive disperse dyes were highly dependent on dyeing pH and optimum results were obtained at pH 6. Percent exhaustion of reactive disperse dye on meta-aramid fabric was over 80% at 2% o.w.f of dye concentration. Wash fastness of pyridone-based reactive disperse dyes was very good to excellent while that of aminoazobenzene reactive disperse dyes was medium to good. Light fastness of all the reactive disperse dyes was very poor which seems to be due to the low photostability of meta-aramid fiber itself.