• Title/Summary/Keyword: aramid fiber

Search Result 172, Processing Time 0.024 seconds

Development of Water-lubricated Plastic Bearings (수-윤활용 플라스틱 베어링 개발에 관한 연구)

  • Hosung Kong;Hung-gu Han
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.235-243
    • /
    • 2023
  • This paper presents the fabrication process of water-lubricated plastic bearings. Plastic bearings require good mechanical properties and tribological properties as well as elasticity and shock resistance, especially when lubricated in dirty water conditions. In this study, sleeve-type plastic bearings are produced by winding a prepreg sheet, which primary contains nitrile rubber (NBR)-modified epoxy, self-lubricating fillers, and various types of lattice-structured reinforcing fibers such as carbon, Aramid, and polyethylene terephthalate. A thermosetting epoxy is chemically modified with NBR to impart elasticity and low-friction characteristics in water conditions. Experimental investigations are conducted to examine the mechanical and tribological characteristics of the developed bearing materials, and the results are compared with the characteristics of a commercial plastic bearing (Thordon SXL), well known as a water-lubricated bearing. A Thordon bearing (mainly composed of polyurethane) exhibits an extremely low load-bearing capacity and is thus only suitable for medium loading (1~10MPa). The tribological characteristics of the test materials are evaluated through Falex block-on-ring (LFW-1) friction and wear tests. The results indicate that friction exhibited by the carbon-fiber-reinforced NBR-10wt.%-modified epoxy composite material, incorporated with the addition of 20wt.% UHMWPE and 6wt.% paraffin wax, is lower than that of the Thorden bearings, whereas its wear resistance surpass that of Thorden ones. Because of these features, the load carrying capacity of the fabricated composite (>10MPa) is higher than that of the Thorden bearings. These results confirm the applicability of water-lubricated plastic bearing materials developed in this study.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.