• 제목/요약/키워드: aramid

검색결과 259건 처리시간 0.024초

Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber

  • Kandekar, Sachin B.;Talikoti, Rajashekhar S.
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Retrofitting is an alteration of existing member or component of the structure. In civil engineering point of view, it is called strengthening of the old structure. Deterioration of structures may be due to aging, corrosion, failure of joints, earthquake forces, increase in service loads, etc. Such structures need urgent repair, retrofitting and strengthening to avoid collapse, cracking and loss in strength or deflection. Advanced techniques are required to be developed for the repair of structural components to replace conventional techniques. This paper focuses exclusively on torsional behaviour of Reinforced Concrete (RC) beams and retrofitted RC beams wrapped with aramid fiber. Beams were retrofitted with aramid fiber by full wrapping and in the form of 150 mm wide strips at a spacing of 100 mm, 150 mm, 200 mm respectively using epoxy resin and hardener. A total 15 numbers of RC beams of 150 mm×300 mm×1300 mm in size were cast, 3 beams are tested as control specimens, and 12 beams are tested for torsion up to the failure and then retrofitted with aramid fiber. Experimental results are validated with the help of data obtained by finite element analysis using ANSYS. The full wrapping configuration of aramid fiber regains 105% strength after retrofitting. With the increase in spacing of fabric material, torsional strength reduces to 82% with about 45% saving in material.

LNGC 2차 방벽에 적용된 Aramid 섬유의 Weibull 통계 분석을 이용한 피로특성 평가 (Estimation of Fatigue Characteristics Using Weibull Statistical Analysis with Aramid Fiber on LNGC Secondary Barrier)

  • 박진형;오동진;김민규;김명현
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.415-420
    • /
    • 2017
  • Insulation systems in Liquefied Natural Gas Carriers (LNGC) are vulnerable to sloshing impact and fatigue loads because of waves. If gas leaks into the primary barrier, the Flexible Secondary Barrier (FSB) prevents the leakage of gas in this system. Fatigue strength of the FSB largely depends on the behavior of composite materials. In this study, a new system is applied to the FSB using aramid fiber to improve the fatigue strength of the secondary barrier, with the intention of replacing conventional E-glass fibers. The manufacturing method involved varying the ratio of the aramid fiber to the E-glass fiber for optimum design of the FSB. The fatigue tests results of the secondary barrier using aramid fiber were superior to that using E-glass fiber. The statistical analysis is performed to obtain the fatigue test results and estimate the probability of failure as well as the design guideline of LNGC secondary barriers.

아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성 (Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer)

  • 안다정;최철훈;이재웅;이상오
    • 한국염색가공학회지
    • /
    • 제29권3호
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.

해수 열화 및 원공 손상 CF/Aramid 복합재의 패치 부착이 굽힘거동에 미치는 영향 (The Patch Attachment Effect for Bending Behavior on the CF/Aramid Composites with Seawater Aging and Hole Damage)

  • 권우덕;권오헌;윤유성
    • 한국안전학회지
    • /
    • 제38권3호
    • /
    • pp.20-26
    • /
    • 2023
  • Fiber-reinforced composite materials with carbon, glass, and aramid fibers are widely applied to industrial field structures due to their excellent properties. However, carbon fibers are vulnerable to external impacts, whereas aramid fibers degrade when exposed to water. This study evaluated carbon/aramid fiber composites degraded and damaged by high-temperature saline environments using acoustic emission (AE). The test specimen was molded using an autoclave and immersed in seawater at 70 ℃ for 224 days. In order to imitate the damage, a 3-mm-diameter hole was drilled using a diamond drill. Additionally, the specimen with the perforation was repaired by patch attachment processing. Three-point bending was used to conduct the flexural experiment, and an AE sensor with a 150-kHz resonance frequency was attached to evaluate the damage and the effect of patch attachment. AE accumulative counts obtained at the maximum load were 69.2, 67.1, and 91.2 for a high-temperature seawater deteriorated condition, a hole specimen, and a repaired patch specimen, respectively. Furthermore, the maximum amplitude of AE was detected at low values of 28 dB, 31.3 dB, and 30.3 dB.

저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성(2) (Surface Modification Effect and Mechanical Property of para-aramid Fiber by Low-temperature Plasma Treatment)

  • 박성민;손현식;심지현;김주용;김태경;배진석
    • 한국염색가공학회지
    • /
    • 제27권1호
    • /
    • pp.18-26
    • /
    • 2015
  • para-aramid fibers were treated by atmosphere air plasma to improve the interfacial adhesion. The wettability of plasma-treated aramid fiber was observed by means of dynamic contact angle surface free energy measurement. Surface roughness were investigated with the help of scanning electron microscopy and atomic force microscopy. The tensile test of aramid fiber roving was carried out to determine the effect of plasma surface treatments on the mechanical properties of the fibers. A pull-out force test was carried out to observe the interfacial adhesion effect with matrix material. It was found that surface modification and a chemical component ratio of the aramid fibers improved wettability and adhesion characterization. After oxygen plasma, it was indicated that modified the surface roughness of aramid fiber increased mechanical interlocking between the fiber surface and vinylester resin. Consequently the oxygen plasma treatment is able to improve fiber-matrix adhesion through excited functional group and etching effect on fiber surface.

아라미드섬유 쉬트에 의한 슬래브의 보강효과 (Strengthening Effects of Slabs by Aramid Fiber Sheet)

  • 연규석;강영석;김형우;이윤수;김남길
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.105-113
    • /
    • 1999
  • 본 연구의 목적은 아라미드 섬유쉬트로 보강된 상판의 보강효과를 구명하는데 있다. 단면 칫수가 $45{\times}200{\times}8.5cm$인 7개의 콘크리트 슬래브를 제작하여, 이중 한개의 슬래브는 최대하중을 알아보기 위하여 무보강 상태로 파괴될 때 까지 하중을 가하였다. 또한 3개의 슬래브는 최대하중의 70%를 가여 균열을 발생시킨 후 아라미드섬유 쉬트로 보강하였고, 나머지 3개의 슬래브는 균열을 발생시키지 않고 직접 아라미드섬유 쉬트로 보강하였다. 연구결과 최대하중, 휨강도 및 연성효과는 초기균열을 갖는 보강된 슬래브와 초기균열이 없는 상태에서 보강된 슬래브가 비슷한 양상을 나타냄으로써 아리미드 섬유쉬트에 의한 슬래브의 보강효과를 확인 할 수 있었다.

RF 마그네트론 스퍼터링에 의해 실리콘이 증착된 메타아라미드 직물의 성질 분석 (Properties of Silicon-deposited Meta-aramid Fabrics by RF Magnetron Sputtering)

  • 박종현;이선영;김춘수;강송희;김의화;이승구
    • 한국염색가공학회지
    • /
    • 제29권1호
    • /
    • pp.18-24
    • /
    • 2017
  • Meta-aramid fabric has been widely used as the reinforcement of composites due to its high flame resistance and tearing strength. Functionality such as abrasion resistance of fabric is very important for specialty fabrics used in car racing suits. In this study, to improve abrasion resistance property of meta-aramid fabric, silicon deposition was conducted by utilizing RF magnetron sputtering. The sputtering process parameters effects were investigated as sputtering power and substrate temperature. The obtained results suggest that the silicon deposition on the meta-aramid fabric has obvious effect upon increasing the abrasion resistance, the thermal insulation and the electric resistance condition for silicon deposition was established. In conclusion, the results of this study have made it possible to manufacture meta-aramids with higher abrasion strength.

아라미드섬유 보강 풍력발전기 로터 블레이드의 연성해석 강도평가 (The FSI Analysis Evaluation of Strength for the Wind Turbine Rotor Blade Improved by the Aramid Fiber)

  • 김석수;강지웅;권오헌
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.17-23
    • /
    • 2015
  • Because of the energy resources shortage and global pollution, the wind power systems have been developed consistently. Among the components of the wind power system, the rotor blades are the most important component. Generally it is made of GFRP material. Recently, GFRP material has been replaced by CFRP composite material in the blade which has an aerodynamic profile and twisted tip. However the failures has occurred in the trailing edge of the blade by the severe wind loading. Thus, tougher material than CFRP material is needed as like the aramid fiber. In this study, we investigated the mechanical behaviors of the blade using aramid fiber composites about wind speed variation. One-way FSI (fluid-structure interaction)analysis for the wind rotor blade was conducted. The structural analyses using the surface pressure loading resulted from wind flow field analysis were carried out. The results and analysis procedure in this paper can be utilized for the best strength design of the blade with aramid fiber composites.

FRP 본딩한 알루미늄 판재의 피로균열 저항성에 관한 연구 (A Study of Resistance of Fatigue Crack in Aluminum Alloy Plate Bonded with FRP)

  • 윤한기;오세욱;박원조;허정원
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.117-126
    • /
    • 1994
  • APAL (Aramid Patched ALuminum alloy) was manufactured, which was a material that was consisting of a A12024-T3 aluminum alloy plate bonded to single-side of it with aramid/epoxy laminates. The aramid/epoxy laminates were bonded to it in condition of 1, 2 ply and fiber orientation of .+-.45, 0.deg./90.deg. Fatigue crack propagation tests were performed at stress ratio R-0.2, 0.5 with Al 2024-T3, APAL 45-1P, APAL 0/90-1P, APAL 45-2P, APAL 0/90-2P specimens to examine behavior of retardation in fatigue crack propagation. All the APAL specimens showed superior fatigue crack resistance. Number of cycle spended for crack to propagate from $a_{M}$=37 to $a_{M}$=65 mm in case of APAL 0/90-2P specimen was half that of Al 2024-T3 specimen. Fatigue crack propagation rate of APAL 0/90 specimens were retarded more compared to APAL 45 specimens and the amounts of retardation at R=0.5 were larger than that at R=0.2. It was found that the retardation in fatigue crack propagation was caused by intact fibers in the wake of crack.ack.

  • PDF

아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구 (Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements)

  • 이가윤;이동영;박민수;이기학
    • 한국지진공학회논문집
    • /
    • 제27권4호
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.