• Title/Summary/Keyword: aramid

Search Result 259, Processing Time 0.027 seconds

Review of the Composite Materials Application to the Solid Rocket Motor Cases (복합재료의 고체 로켓 모터 케이스 적용 리뷰)

  • Lee, Tae-Ho
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper investigated the composite materials application examples and trends in the future to the solid rocket motor cases. The motor case must be stiff and tolerate at the high pressures, and light weight. In accordance to these kind of requirements, the composite materials showed the adaptable efficiency, and glass fibers, aramid, carbon fibers are applied to orderly. The comparison of the motor case efficiencies of the D6AC steel alloy, aramid, carbon fibers results in the carbon fibers best. Also the capacity of the payload will be increased more than 20% by using the high strength ones.

Dyeing and Finishing on Aramid fabrics (아라미드 섬유의 염색가공)

  • Park, Sung-Min;Kim, Myung-Soon;Kwon, Il-Jun;Kim, Mi-Kyung;Hong, Jin-Pyo
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.3-3
    • /
    • 2011
  • 아라미드 섬유는 고강도, 고탄성을 나타내고, 고내열성, 치수 안정성, 내약품성, 전기 절연성 등이 뛰어나다. 아라미드 섬유는 일반 섬유보다 강한 물성을 지닌 슈퍼섬유소재의 하나로 지난 수십년 간 내열성 또는 고강도 섬유로 많은 연구 및 개발이 이루어져 왔으며, 보호복이나 군용, 특수의류 분야에 많은 용도 전개가 가능하나 유리전이온도 및 결정화도가 상대적으로 높아서 난염성 섬유소재로 염색 메카니즘의 명확한 규명이 없다. 따라서 본 연구에서는 난염성인 아라미드 섬유(m-Aramid, p-Aramid)의 염색방법에 대한 연구로 표면개질을 통한 염색성, 팽윤제 종류 및 농도, 염색온도 조건, 중성염 효과 등 염색조건에 따른 염색특성을 알아보았으며, 또한 다양한 염료의 적용을 통하여 침염뿐만 아니라, 날염 가능성에 대해 연구를 진행하였다.

  • PDF

Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers

  • Mazloom, Moosa;Mirzamohammadi, Sajjad
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.137-154
    • /
    • 2019
  • In this study, thermal effects on the mechanical properties of cement mortars with some types of fibers is investigated. The replaced fibers were made of polypropylene (PP), aramid, glass and basalt. In other words, the main goal of this paper is to study the effects of different fibers on the mechanical properties of cement mortars after subjecting to normal and sub-elevated temperatures. The experimental tests used for investigating these effects were compressive, splitting tensile, and four-point bending tests at 20, 100 and $300^{\circ}C$, respectively. Moreover, the microstructures of the specimens in different temperatures were investigated using scanning electron microscope (SEM). Based on the experimental results, the negative effects of sub-elevated temperatures on four-point bending tests were much more than the others. Moreover, using the fibers with higher melting points could not improve the qualities of the samples in sub-elevated temperatures.

Investigation of Co-poly-para-aramid Fiber Dispersion in Chloroprene Rubber Matrix and Improvement of Dispersibility Through Fiber Surface Modification

  • Garam Park;Hyeri Kim;Gayeon Jeong;Dohyeong Kim;Seungchan Noh;Dajeong Gwon;Myung Chan Choi;Jaseung Koo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.175-180
    • /
    • 2022
  • To produce a co-poly-para-aramid fiber (AF, Technora®)-reinforced neoprene rubber composite, dispersion of AF in a neoprene matrix is investigated. The AF is then surface-modified by mercerization and acetone, plasma, and silane treatments to improve dispersibility. Finally, an internal mixer process is used to disperse the surface-modified fibers in the neoprene rubber matrix.

Improvement of the Strength Properties and Impact Resistance of the Cement Composite Materials by the use of Surface Modification of the Aramid Fibers (아라미드섬유의 표면개질에 의한 시멘트 복합재료의 강도특성 및 내충격성능의 향상효과)

  • Nam, Jeong-Soo;Yoo, Jae-Chul;Kim, Gyu-Yong;Kim, Hong-Seop;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.100-108
    • /
    • 2015
  • The purpose of this study is to evaluate the effect of improvement on the impact resistance and strength properties of cement composites by surface modification of aramid fiber. For aramid fiber reinforced cement composites, therefore, dispersion capability and the bonding efficiency between the fibers and the cement composite material need to be improved. It is possible by modifying surface properties to hydrophobic, it is considered that oiling agent ratio of 1.2 % and improvement of performance is in need to be investigated. In this study, short aramid fibers were mixed by different fiber length and oiling agent ratio. And improvement of strength properties and impact resistance performance of hybrid cement composites were evaluated under the influence of steel fiber. As a result, strength properties of aramid fiber reinforced cement composites are different by mixing ratio of fiber, oiling agent ratio and length of fiber. In case of cement composites which have same volume fraction and fiber length, tensile strength and flexural strength were improved with increase of the emulsions throughput of the fiber surface. The results of evaluation on the static strength properties had effects on impact resistance performance by high-velocity impact. And it was observed that the scabbing of rear was suppressed with increase of the oiling agent ratio.

Frictional and Wear Characteristics of Non-Asbestos Materials at Elevated Temperature (고온에서 비석면 마찰재의 마찰$cdot$마모특성)

  • 안병길;최웅수;권오관
    • Tribology and Lubricants
    • /
    • v.7 no.2
    • /
    • pp.61-66
    • /
    • 1991
  • The frictional and wear characteristics of non-asbestos friction materials made of four different fibers (carbon, aramid, ceramic and glass) have been investigated at elevated temperature using High Frequency Friction Tester. On the basis of the experimental results, friction and wear phenomena of four different non-asbestos fibers were caused by lattice layer film of carbon, polymeric transfer film of aramid, abrasion of ceramic and adhesion of glass fiber under each contact junction. The surface analysis of the worn specimens and counter parts after tests were observed using Scanning Electron Microscope and Optical Microscope.

The Damage Behavior of Glass/Epoxy and Aramid/Epoxy in Leaf Spring of Ankle Foot Orthosis (A.F.O) due to the Various Impact Velocities (족부보장구(A.F.O.) 판스프링용 Glass/Epoxy와 Aramid/Epoxy의 충격속도 변화에 따른 손상 거동)

  • Song Sam-Hong;Oh Dong-Joon;Jung Hoon-Hee;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1526-1533
    • /
    • 2004
  • The needs of walking assistant device such as the Ankle Foot Orthosis (A.F.O) are getting greater than before. However, most of the A.F.O are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, [0/90]sub 2S/) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

A Study on Noise Resistance and Physical Properties of NBR Rubber Materials Containing Oleamide and Aramid Chip (Oleamide 및 아라미드 칩을 첨가한 NBR 고무재료의 내소음성 및 물성 연구)

  • Kim, Hyun-Muk;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.79-87
    • /
    • 2006
  • This study are conducted for the purpose of developing rubber material with noise and crack resistance. Cure characteristics, physical properties, thermal resistance, fuel resistance, abrasion resistance, crack resistance and noise resistance of NBR compounds with the various amounts of oleamide and aramid chip were investigated. From the measurements of cure characteristics and Mooney viscosities, cure characteristics of uncured rubber showed that a torque was decreased as the amount of oleamide increased. Hardness, modulus and elongation of rubber specimens tended to be reduced gradually, however, tensile strength remained unchanged as the amount of the oleamide increased. As a testing results of heat resistance for 70 hours at $120^{\circ}C$ and oil resistance far 70 hours at $40^{\circ}C$, tensile strength and elongation were all reduced. From the TGA/DSC analysis, there was no such a change observed in thermal characteristics of rubber materials. As a result of testing basic physical properties, abrasion resistance, noise resistance and crack resistance, the optimum ratio of oleamide to NBR was found to be 3 phr, while that of aramid to NBR 227001 was 1 phr.

Effects of Aramid Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (LNG 화물창 2차 방벽의 기계적 성능에 아라미드 섬유가 미치는 영향에 대한 연구)

  • Bang, Seoung-Gil;Yeom, Dong-Ju;Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.206-213
    • /
    • 2021
  • Recently, although the size of the LNG Cargo Containment System (CCS) has been increasing, the secondary barrier is reported to remain unchanged, and the conventional Flexible Secondary Barrier (FSB) used in Mark-III type has been pointed out to be vulnerable to failure owing to thermal and cyclic loads. In this respect, a tensile test was carried out to verify the reinforcing effect of FSB using aramid fiber on weft compared to the conventional FSB. In order to consider the LNG leakage situation, a series of tensile tests were conducted from ambient to cryogenic temperature, and mechanical properties were evaluated for each fiber direction on account of anisotropy. Tensile behavior and fracture analyses were performed to confirm the mechanical properties of each material according to temperature. Tensile test results proved that replacing the aramid fiber instead of E-glass fiber used on weft is effective in enhancing the mechanical properties.