• Title/Summary/Keyword: aquifer model

Search Result 215, Processing Time 0.03 seconds

Analysis of Temporal and Spatial Variations of Channel-Aquifer Interaction Using a Distributed Catchment Model: A Case Study for the Tarland Burn Catchment in the UK (분포형 유역 모델을 이용한 하천-지하수 상호작용의 시공간적 변동 해석: 영국 Tarland Burn 유역에 대한 사례 연구)

  • Koo, Bhon-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.253-257
    • /
    • 2007
  • Channel-aquifer interaction is one of the key hydrological processes that determine water flows in the stream/river channel. Field measurements of channel-aquifer interaction, however, is very difficult and costly, particularly when one intends to understand its variations across a catchment for a long period. Hydrological simulations using a catchment model are a relatively easier and cheaper alternative provided the model structure is appropriate for describing channel-aquifer interaction. In this study, a catchment model called CAMEL (Chemicals from Agricultural Management and Erosion Losses) is used for estimating channel-aquifer interaction over time and space. CAMEL is a distributed catchment model to simulate transformation and transport processes of sediment and pollutants as well as water flows at the catchment scale. In the model, a catchment is represented using a network of square columns each of which is comprised of various storages of water. CAMEL explicitly simulates both surface and subsurface processes including channel-aquifer interaction. This paper presents an application study results of CAMEL for the Tarland Burn Catchment, a small (catchment area $52\;km^2$) rural catchment in Scotland, UK, demonstrating some of the channel-aquifer interaction dynamics across the catchment during a 2-year period.

  • PDF

Dual-permeability Fractal Model of Groundwater Flow in Fissured Aquifers (균열대수층내 지하수유동에 관한 이중투수율 프락탈모델)

  • Bidaux, Pascal;Hamm, Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.433-442
    • /
    • 1997
  • A dual-permeability fractal model of fluid flow is proposed. The model simulates groundwater flow in fissured dual aquifer system composed of Aquifer 1 and Aquifer 2. For this model. groundwater flow originates only from Aquifer 1 on the pumping well. The model considers wellbore storage and skin effects at the pumping well and then shows exact drawdown at the early time of pumping. Type curves for different flow dimensions and for two cases are presented and analyzed. The case 1 represents the aquifer system which consists of Aquifer 1 with low permeability and high specific storage and Aquifer 2 with high permeability and low specific storage. The case 2 is inverse to the case 1. Dimensionless drawdown curves in Aquifer 1 and Aquifer 2 shows characteristic trend each other. Consequently, the model will be useful to analyze pumping test data of different draw down patterns on the pumping well and observation wells.

  • PDF

Evaluation of Meymeh Aquifer vulnerability to nitrate pollution by GIS and statistical methods

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Increasing the concentration of nitrate ions in the soil solution and then leaching it to underground aquifers increases the concentration of nitrate in the water, and can cause many health and ecological problems. This study was conducted to evaluate the vulnerability of Meymeh aquifer to nitrate pollution. In this research, sampling of 10 wells was performed according to standard sampling principles and analyzed in the laboratory by spectrophotometric method, then; the nitrate concentration zonation map was drawn by using intermediate models. In the drastic model, the effective parameters for assessing the vulnerability of groundwater aquifers, including the depth of ground water, pure feeding, aquifer environment, soil type, topography slope, non-saturated area and hydraulic conductivity. Which were prepared in the form of seven layers in the ARC GIS software, and by weighting and ranking and integrating these seven layers, the final map of groundwater vulnerability to contamination was prepared. Drastic index estimated for the region between 75-128. For verification of the model, nitrate concentration data in groundwater of the region were used, which showed a relative correlation between the concentration of nitrate and the prepared version of the model. A combination of two vulnerability map and nitrate concentration zonation was provided a qualitative aquifer classification map. According to this map, most of the study areas are within safe and low risk, and only a small portion of the Meymeh Aquifer, which has a nitrate concentration of more than 50 mg / L in groundwater, is classified in a hazardous area.

Evaluation of Biodegradation in an Aquifer Contaminated with Petroleum Hydrocarbon

  • 이지훈;이진용;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.120-123
    • /
    • 2001
  • To evaluate the biodegradability of contaminants in an aquifer, computer modeling with RT3D model (Clement, 1997) was used. The RT3D model simulates the biodegradation of organic contaminants using a number of aerobic and anaerobic electron acceptors. The RT3D model was applied to a well-studied petroleum hydrocarbon plume in a shallow unconfined aquifer in Uiwang, Korea. The results of this study demonstrate tile importance of biodegradation processes in the monitored natural attenuation and in reducing contaminant concentrations in a shallow aquifer. The modeling results tell that the amount of electron acceptors is the key factor affecting biodegradation of TEX, the petroleum hydrocarbon contaminant in shallow groundwater

  • PDF

Hydrogeological Properties of Uunconsolidated Formations and Bedrocks in the Central Area of Busan Metropolitan City (부산 도심지역 미고결층과 기반암의 수리지질 특성)

  • Hamm Se-Yeong;Cha Yong-Hoon;Cheong Jae-Yeol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.407-421
    • /
    • 2005
  • This study aims to investigate hydrogeological properties of the central area from Yangjeong-Dong to Sujeong-Dong in Busan Metropolitan City. For this study, pumping tests were carried out in the bedrock aquifer of Yangjeong-Dong and the unconsolidated aquifer near Busanjin railway station. The pumping test in the bedrock aquifer containing the Dongrae fault revealed specific hydraulic characteristics with respect to the fault. The pumping test in the unconsolidated aquifer revealed the hydrogeologic properties of both coastal landfill and fine sediments. It was found that the Moench's sphere-shaped dual-porosity model fits the bedrock aquifer, whereas the Neuman's uncofined aquifer model accords with the unconsolidated aquifer. The average transmissivity and storage coefficient of the bedrock aquifer are $2.75{\times}10^{-5}m^2/s\;and\;6.41{\times}10^{-5}$ and those of the unconsolidated aquifer are $8.24{\times}10^{-4}m^2/s\;and\;3.70{\times}10^{-3}$, respectively. On the other hand, slug tests gave average transmissivity and storage coefficient values of $9.84{\times}10^{-4}m^2/s\;and\;1.21{\times}10^{-2}$, respectively.

A study of the simulation of thermal distribution in an aquifer thermal energy storage utilization model (대수층 축열 에너지 활용 모델의 온도 분포 시뮬레이션 연구)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.697-700
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop an ATES system which has certain hydrogeological characteristics, understanding of the thermo hydraulic processes of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermo hydraulic transfer for heat storage is simulated using FEFLOW according to two sets of pumping and waste water reinjection scenarios of heat pump operation in a two layered confined aquifer. In the first set of model, the movement of the thermal front and groundwater level are simulated by changing the locations of injection and pumping well in seasonal cycle. However, in the second set of model the simulation is performed in the state of fixing the locations of pumping and injection well. After 365 days simulation period, the temperature distribution is dominated by injected water temperature and the distance from injection well. The small temperature change is appears on the surface compared to other slices of depth because the first layer has very low porosity and the transfer of thermal energy are sensitive at the porosity of each layer. The groundwater levels and temperature changes in injection and pumping wells are monitored to validate the effectiveness of the used heat pump operation method and the thermal interference between wells is analyzed.

  • PDF

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Saltwater Intrusion Modeling in the Aquifer Bounded by Manila Bay and Parañaque River, Philippines

  • Insigne, Maria Sharlene L.;Kim, Gyeong-Seok
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • The continual extraction and indiscriminante use of groundwater for residential sectors could cause a decrease in the groundwater level in Para$\tilde{n}$aque river and Las Para$\tilde{n}$aque City; and allows saltwater to penetrate into the aquifer due to the proximity of Manila Bay. This study models the present condition and extent of saltwater intrusion in the aquifer bounded by Para$\tilde{n}$aque river River and Manila Bay. The model is simulated using a 3D finite element modeling software (FEMWATER) that is capable of modeling the groundwater flow condition in the aquifer. Moreover, the model can also be used to predict the future condition of the aquifer for better groundwater management. This study aims to raise public awareness of the extent of the problem and the possible side effects incurred. The model will serve as a basis for further studies on remediation techniques and saltwater intrusion control in the coastal aquifer of Para$\tilde{n}$aque river City.

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model (PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1023-1035
    • /
    • 2015
  • This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System (대수층 축열시스템의 열거동에 관한 실험적 연구)

  • 이세균;문병수;남승백;김기덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1780-1787
    • /
    • 1992
  • Experiments have been performed on the thermal behavior in a liquid saturated porous medium in a system to simulate a single well aquifer thermal energy storage system. The principal interests in this study are the combined effects of forced and natural convection. Significant buoyancy flow due to natural convection is developed quickly as the temperature difference between the injection and original aquifer temperature increases. Theoretical model under simplified assumptions (called simple buoyancy flow model in this study) has been developed. The results of this model agree well with the experiments. The effects of buoyancy flow on the recovery factor are also examined in this study.