• Title/Summary/Keyword: aqueous two phase system

Search Result 94, Processing Time 0.029 seconds

Separation and Recovery of Cyclodextrin Glucanotransferase Using Aqueous Two-Phase Systems (수성2상계를 이용한 Cyclodextrin Glucanotransferase 분리 및 회수)

  • 김진현;홍승서;이현수
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.556-559
    • /
    • 2000
  • Cyclodextrin Glucanotransferase(EC 2.4.1.19 : 1,4-${\alpha}$-glucano) transferase, cyclizing; CGTase) can be separated and recovered in an aqueous two-phase system composed of poly(ethylene glycol)(PEG)/dextran and PEG/salt. In an aqueous two-phase system consisting of PEG 35000 (5%) and dextran T2000 (7%), all cell and debris were collected at the interphase. CGTase partitioned to the denser dextran phase at an yield of 83.4%. On the other hand, in an aqueous two-phase system consisting of PEG 35000 (10%) and sodium phosphate (15%), CGTase partitioned to the denser salt phase at an yield of 95.5%. In order to recover CGTase using an aqueous two-phase system, the PEG/salt system proved to be more efficient than the PEG/dextran system in terms of yield and cost.

  • PDF

Optimization of Conditions for Extractive Ethanol Fermentation in an Aqueous Two Phase System (수성이상계 에탄올 추출발효 조건의 최적화에 관한 연구)

  • 김진한;허병기;목영일
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.531-537
    • /
    • 1994
  • This study was undertaken with objective of optimizing the conditions of fermentation in an aqueous two-phase system which is composed of polyethylene glycol (PEG) 20000 and crude dextran (Dx). The data were obtained and analyzed using the Box-Wilson's experimental design protocol and the response surface methodology. To reach this end a multilinear polynomial regres- sion model was developed, which can be utilized for the purpose of optimizing the extractive fermentation. Optimum conditions for batch fermentation with aqueous two phase system were found to be at 4.2~5.4% PEG/3.2~4.2% Dx range. The composition of the center was 4.8% PEG/ 3.6% Dx. Optimum operating conditions for initial sugar concentration and fermentation time were approximately 160 g/l, and 21~22 hr, respectively. Fermentation in the aqueous two phase system composed of 5% PEG/4% Dx showed increase of 23% in ethanol concentration, of 9.5% in ethanol yield, and of 19% in ethanol productivity as compared to the case of fermentation of neat Jerusalem artichoke juice.

  • PDF

Partitioning of Recombinant Human Interleukin-2 in a Poly(ethylene glycol)-Dextran Aqueous Two-Phase System

  • Lee, In-Young;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.135-140
    • /
    • 1992
  • The partitioning of recombinant human interleukin-2(rhII-2) in PEG 8000-dextran 38800 aqueous two-phase system has been investigated using three different sources of rhIL-2. In the case of pure rhIL-2, the solubility in a PEG-dextran two-phase system was low and most of rhIL-2 was partitioned into the bottom phase. For the recovery of rhIL-2 from insoluble protein aggregates, the inclusion bodies of recombinant E. coli were solubilized by the treatment with sodium dodecyl sulfate (SDS). The addition of SDS significantly enhanced not only the solubility of rhIL-2 but also the partitioning of rhIL-2 to the top phase. When the ratio of SDS to rhIL-2 was 2.0, the partition coefficient(K) and the recovery yield(Y) at the top phase were 4.5 and 88%, respectively, at pH 6.8. In order to reduce the recovery steps further, SDS was directly added to the intact recombinant E. coli cells and then partitioned into the PEG/dextran aqueous two-phase system. The observed partition coefficient ($K{\cong{3.0$) and recovery yield ($Y{\geq}80%$ )of this method were comparable to the rhIL-2 recovery from insoluble protein aggregates. The results obtained in this work indicate that PEG-dextran two-phase partitioning might provide a simple way for the recovery and partial purification of recombinant proteins which are produced as inclusion bodies.

  • PDF

Large-Scale Purification of Protease Produced by Bacillus sp. from Meju by Consecutive Polyethylene Glycol/Potassium Phosphate Buffer Aqueous Two-Phase System

  • Cho, Seong-Jun;Kim, Chan-Hwa;Yim, Moo-Hyun;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.498-503
    • /
    • 1999
  • Protease produced from Bacillus sp. FSE-68 was isolated from Meju, a Korean fermented soybean starter, and was purified by a two-consecutive aqueous two-phase system. The change of partition coefficient (K) in the polyethylene glycol (PEG)/potassium phosphate buffer (PPB) aqueous two-phase system was measured at different pHs (6.0- 9.2), PPB concentrations (8-12%), and temperatures (4 and $20^{\circ}C$). As the PPB concentration in the aqueous two-phase system increased, the protease concentration in the top phase (PEG-rich phase) increased, thereby enhancing the partition coefficient. The minimum partition coefficient of the protease was achieved at pH 7.0, whereas that of the total protein was at pH 6.0. The biggest difference in partition coefficients of total protein and protease occurred at pH 6.0. It was interesting to note that the partition coefficient of protease decreased as the temperature increased. The optimum condition of the primary aqueous two-phase extraction of Bacillus sp. FSE-68 was pH 6.0, 14% (w/w) PPB, and 16% (w/w) PEG at $4^{\circ}C$, and the crude enzyme concentration in this system was 50% (w/w). The protease, which was concentrated in the top phase, was further mixed with 15% (w/w) PPB (pH 7.0) in the ratio of 1:1 at $20^{\circ}C$ to elute the bottom phase (PPB-rich phase). Using these steps, the purification fold achieved was 9.2 with a 44.7% yield.

  • PDF

Cultivation of Digitalis lanata Cell Suspension in an Aqueous Two-Phase System

  • Choi, Yeon-Sook;Lee, Sang-Yoon;Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.589-592
    • /
    • 1999
  • Suspension cultures of Digitalis lanata were successfully performed in an aqueous two-phase system (ATPS) of 4.5% polyethylene glycol (PEG) 20,000 and 2.8% crude dextran. Cell growth in the medium containing an individual ATPS-forming polymer was inhibited due to the toxicity of PEG and a high viscosity of dextran. Formation of ATPS supported cell growth by showing a considerably decrease in viscosity and partitioning of cells into a PEG-lean dextran phase. It was found that an aqueous two-phase cultivation of plant cells in a stirred tank bioreactor could be successfully applied.

  • PDF

Partitioning of Lactobacillus helveticus Cells and Lactic Acid in Aqueous PEI/HEC Two-Phase Systems. (수용성 이상계에서의 젖산과 Lactobacillus helveticus세포의 분배특성)

  • 안한군;권윤중
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 1998
  • For an ideal extractive bioconversion in aqueous two-phase systems, the product has to be preferentially partitioned into the phase opposite to the one in which the biocatalyst is located. Partitioning behaviors of Lactobacillus helveticus IAM 11090 and lactic acid in aqueous two-phase systems composed a polycation, poly(ethylenimine) (PEI), and an uncharged polymer (hydroxyethyl)cellulose (HEC) were investigated. L. helveticus cells were preferentially partitioned to the HEC-rich top phase while about 85% of lactic acid was partitioned to the PEI-rich bottom phase. These results indicate that extraction of charged, low molecular weight products in an aqueous two-phase systems can be promoted by using an oppositely charged polymer as one of the phase-forming polymer. By the ideal partitioning of the cells and lactic acid, an aqueous PEI/HEC two-phase system can be used as a potential system for the extractive lactic acid fermentation of cheese whey.

  • PDF

Optimization of Catechol Production Using Immobilized Resting Cells of Pseudomonas putida in Aqueous/organic Two-phase System

  • Chae, Hee-Jeong;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.345-351
    • /
    • 1997
  • An aqueous/organic two-phase reaction system was applied to the production of catechol using immobilized resting cells of Pseudomonas putida CY 400. Water/ethyl ether system was used because of high partition coefficient of catechol and thus to reduce the product inhibition and degradation. Among the tested immobilization carriers, polyacrylamide gel gave the highest catechol productivity. The immobilization seemed to protect the cells against solvent toxicity. From the simulation of reaction conditions based on two-phase models, it was found that there was an optimum acetate concentration at fixed benzoate and cell concentrations for the catechol productivity. A lower phase volume ratio (lower fraction of organic phase) gave a higher productivity. However, the substrate conversion was low at low phase volume ratio.

  • PDF

Production of Cyclodextrin Homologues Using Aqueous Two-Phase System

  • Chang, Woo-Jin;Koo, Yoon-Mo;Park, Sung-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.97-100
    • /
    • 1997
  • Cyclodxtrin homologues(CDs), produced by cyclodextrin glycosyltransferase(CGTase), were simultaneously partitioned in aqueous two-phase system(ATPS). Partition coefficients of CDs were measured in PEG/dextran systems. Phosphate, citrate, sulfate were tested as salt. ATPS of PEG/salt and PEG/dextran had the partition coefficients of the CDs, larger than unity. However, PEG/dextran system was observed better than PEG/salt as CGTase activity decreased sharply with salt concentration. Enzymatic rection occurred mainly in PEG-rich bottom phase because of the low partition coefficient of CGTase. The resulting CDs transferred to the PEG-rich top phase, obeying the diffusional partition. In the ATPS of 7% PEG(M.W.40, 000), 7mg/ml of CDs were obtained in top phase at 4.5 hours.

  • PDF

Production of $\alpha$-Amylase using Aqueous Two-Phase System (수성 2상계를 이용한 알파-아밀라제의 생산)

  • Choi, J.S.;Yoo, Y.J.
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.358-362
    • /
    • 1988
  • Aqueous two-phase fermentation system was tested for the overproduction of extracellular enzyme through $\alpha$-amylase fermentation by Bacillus amyloliquefaciens. By employing aqueous two-phase system $\alpha$-amylase activity showed 25% increase compared to the result using regular medium and no deactivation of the enzyme was observed. The presence of polyethylene glycol was observed to promote the enzyme production, while to inhibit the growth of the microorganism. It is recommended that polyethylene glycol be added during the log-growth phase and dextran be added after the enzyme activity reaches Its maximum for efficient $\alpha$-amylase fermentation and in situ recovery of the enzyme.

  • PDF

Formation of PEG/Dextran Aqueous Two-Phase System for Starch Hydrolysis Using $\alpha$-Amylase ($\alpha$-Amylase로 전분 가수분해를 위한 PEG/Dextran 수성 2상계 구성)

  • 박병춘;임동준
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.190-195
    • /
    • 1992
  • In the polyethylene glycol/dextran aqueous two-phase systems, volume ratio was increased and partition coefficient was decreased with the increase of potyethylene glycol molecular weight and concentration. However the volume ratio was decreased and the partition coefficient was increased with the increase of dextran molecular weight. On the other hand, the volume ratio and the partition coefficient were decreased with the increase of dextran concentration. Continuous enzymatic hydrolysis of soluble starch with $\alpha$-amylase which was produced by Bacillus amyloliquefaciens IF0 14141 was investigated in polyethylene glycol/dextran aqueous two-phase systems. Nonreacted soluble starch and $\alpha$-amylase were reused in these systems. $\alpha$-Amylase activity was maintained more than 100 hrs by recycling of $\alpha$-amylase from bottom of settler to reactor.

  • PDF