• Title/Summary/Keyword: aqueous conformation

Search Result 51, Processing Time 0.024 seconds

THE COMBINATION OF CHEMOMETRICS AND 2D NIR CORRELATION SPECTROSCOPY IN THE ANALYSIS OF DENATURATION PROCESS

  • Czarnik-Matusewicz, Boguslawa;Murayama, Koichi;Wu, Yuqing;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1286-1286
    • /
    • 2001
  • Despite extensive theoretical and experimental studies the structure of the protein-solvent interface is subject of many controversy. Understanding the processes that occur in aqueous solution requires understanding of the solvent influence on the structure of protein. The aim of this study is to investigate the applicability of NIR methods in the study of hydration phenomena in protein solutions. Temperature-induced changes in NIR spectra of -lactoglobulin (BLG) in aqueous solutions have been investigated by means of two-dimensional correlation spectroscopy (2DCOS) and principal component analysis (PCA). With the temperature increase the balance of forces between the BLG's interaction with itself and the BLGs interaction with its environment is disrupted leading to BLG unfolding. Significant differences of 2D signals and distinct discrepancies of loading on PC1 and PC2 were observed as a result of temperature increase. In the native folded conformation of BLC, most of the nonpolar amino acids are hidden in the centre of the structure, out of contact with water molecules, while charged groups are outside, in the contact with water. The polar groups promote low density Ih-type structure in the water outside this first hydration shell. When BLG unfolds it assumes a more extended configuration on which the previously buried nonpolar groups are exposed to water and promote the higher density II-type structure outside its first shell. Detailed assignments of bands attributed to the bulk water, different states of the hydrated water and the changed conformation of BLG are proposed.

  • PDF

Studies on Silk Fibroin Membranes(I) -Structure of Silk Fibroin Membranes and Their properties- (Silk Fibroin 막에 관한 연구(I) -Silk Fibroin막의 구조특성-)

  • 최해욱;박수민;김경환
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • Silk fibroin was dissolved in 9.3 M LiBr aqueous solution at 4$0^{\circ}C$ for 1 hour. The dissolved silk fibroin was regenerated by casting the dialyzed solution into the membrane. The freshly prepared silk fibroin membrane was soluble in water and was. mainly consisted of random coil conformation. By the treatments in saturated water vapor at 3$0^{\circ}C$ and in 75% ethanolic aqueous solution (V/V), the insoluble membranes were obtained and the structure and morphology of those were investigated for the structure by means of X-ray diffraction analysis, infrared spectroscopy, thermal analysis. Rheovibron and scanning electron micrograph. Silk II type crystals were obtained by treating amorphous silk fibroin membrane in the random coil conformtion with 75% ethanol solution(V/V). Crystallization to silk II type crystals occured even after a few minutes, and a large number of silk II type crystals were formed after 30 mins. On the other and, the membrane treated in saturated water vapor was composed of the mixtures of silk I and silk II type crystals. A large number of silk I and silk II type crystals were formed after 24 hours. The micro brownian motion in the amorphous regions of silk fibroin membrane started at about 175~185$^{\circ}C$. $\alpha$ dispersion appeared at about 20$0^{\circ}C$ in the amorphous membrane, and at about 22$0^{\circ}C$ in the crystalline membrane. The crystallization of random coil conformation to silkII type crystals occured at about 215$^{\circ}C$. The surface, bottom and cross-section of the membranes were observed by scanning electrom microscope. Fine forms alike spherulites appeared at the surface of crystalline membrane.

  • PDF

Solution Structure of LXXLL-related Cofactor Peptide of Orphan Nuclear Receptor FTZ-F1

  • Yun, Ji-Hye;Lee, Chul-Jin;Jung, Jin-Won;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.583-588
    • /
    • 2012
  • Functional interaction between Drosophila orphan receptor FTZ-F1 (NR5A3) and a segmentation gene product fushi tarazu (FTZ) is crucial for regulating genes related to define the identities of alternate segmental regions in the Drosophila embryo. FTZ binding to the ligand-binding domain (LBD) of FTZ-F1 is of essence in activating its transcription process. We determined solution structures of the cofactor peptide ($FTZ^{PEP}$) derived from FTZ by NMR spectroscopy. The cofactor peptide showed a nascent helical conformation in aqueous solution, however, the helicity was increased in the presence of TFE. Furthermore, $FTZ^{PEP}$ formed ${\alpha}$-helical conformation upon FTZ-F1 binding, which provides a receptor bound structure of $FTZ^{PEP}$. The solution structure of $FTZ^{PEP}$ in the presence of FTZ-F1 displays a long stretch of the ${\alpha}$-helix with a bend in the middle of helix.

Conformation of Antiimflammatory Fenamates (소염진통성 페나메이트 유도체들의 형태분석)

  • Chung, Uoo-Tae;Kang, Kee-Long;Lee, Sung-Hee
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.632-639
    • /
    • 1996
  • Most stable conformers of some antiinflammatory fenamates were obtained by conformational free energy change calculations. Conformational energies for the molecules as unhydrate d state were estimated first, and those as hydrated state were calculated then to simulate the molecules in aqueous solution using a hydration shell model. The initial geometries of the molecules were obtained either from X-ray crystallographic data or from homologous molecular fragments. The bond lengths and angles were not varied, but all the torsion angles were varied step by step during the conformational free energy surface searching. The results show that there are several feasible conformations for a compound. And the molecules are somewhat stabilized by hydration (-${\delta}G_{hyd}{\cong}$13 to 16kcal/mole), but the conformations were not changed significantly by the hydration itself. There seems to be a strong tendency of intramolecular hydrogen bonding between imino hydrogen and carboxyl oxygen of the compounds. As a result, the carboxyl group cannot be rotated freely, and the rotation of the second aromatic ring is the main reason for the conformational variations of the compounds. The ECEPP force fields via the program CONBIO were used throughout this study.

  • PDF

Conformation of L-Ascorbic Acid in solution. 1. Neutral L-Ascorbic Acid

  • Shin, Young A.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • Conformational free energy calculations using an empirical potential function and the hydration shell model (a program CONBIO) were carried out on the neutral L-ascorbic acid (AA) in the unhydrated and hydrated states. The conformational energy was minimized from starting conformations which included possible conformations of six torsion angles in the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. From the analysis of conformational free energies for AA in both states, intramolecular hydrogen bonds (HBs) are proved to be an essential factor in stabilizing the overall conformations, and cause the conformations in both states to be quite different from those in crystal. In the case of hydrated AA, there is a competition between HBs and hydration, and the hydration around the two hydroxyl groups attached to the acyclic side chain forces the molecule to form less stable HBs. The hydration affects strongly the conformational energy surfaces of AA. Several feasible conformations obtained in this work indicate that there exists an ensemble of several conformations in aqueous solution. The calculated probable conformations for the rotation about the C5-C6 bond of the acyclic side chain are trans and gauche +, which are in good agreement with results of NMR experiment.

Conformational transition of regenerated Antheraea pernyi silk fibroin sponge treated with aqueous ethanol solution and in vitro wound healing effect of wild silk fibroin solution (작잠 실크 피브로인에 의한 in vitro 상처 회복 효과 및 에탄올 처리에 따른 작잠 실크 피브로인 스폰지의 구조 전이)

  • Lee, Kwang-Gill;Jo, You-Young;Yeo, Joo-Hong;Lee, Heui-Sam;Kim, Kee-Young;Kim, Hyun-Bok;Kim, An-Sook;Kim, Seong-Gon;Kweon, HaeYong
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Regenerated Antheraea pernyi silk sponge was prepared using calcium nitrate 4 hydrate melt and examined the conformational changes treated with aqueous ethanol solution. The conformation of silk sponges was changed from random coil structure to ${\beta}$-sheet and ${\alpha}$-helix conformation with low ethanol concentration (50 ~ 70%). On the other hand, that of silk sponges with 80% ethanol treatment showed ${\beta}$-sheet ($700cm^{-1}$), ${\alpha}$-helix ($625cm^{-1}$), and random coil ($660cm^{-1}$) specific peaks. Wound healing effect in vitro was observed by cytoslective wound healing kit. Therefore, regenerated Antheraea pernyi silk sponges might be used as promising wound dressing materials.

Structural and Physical Properties of Antheraea pernyi Silk Fibroin Fiber Treated with $I_2-KI$ Aqueous Solution

  • Khan Md. Majibur Rahman;Gotoh Yasuo;Morikawa Hideaki;Miura Mikihiko
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.333-338
    • /
    • 2006
  • Silk fibroin (SF) fiber from the Antheraea pernyi silkworm was treated with a 1.23 N iodine-potassium iodide ($I_2-KI$) aqueous solution, and the structure and physical properties were investigated to clarify the effects of the iodine treatment. The noticeably high weight gain value of SF fiber, about 25 wt% was attributed to the absorption of polyiodide ions in the form of $I_3{^-}\;and\;I_5{^-}$. Fourier transform infrared spectroscopy and X-ray diffraction measurements suggested that polyiodide ions mainly entered the amorphous region. In addition, a new sharp reflection on the meridional direction, corresponding to a period of $7.0{\AA}$, was observed and indicated the possibility of the formation of mesophase structure of ${\beta}$-conformation chains. Dynamic viscoelastic measurements showed that the damping tan ${\delta}$ peak at $270^{\circ}C$ gradually shifted to lower temperature in the iodinated SF fibers, suggesting an enhancement of the molecular motion of the fibroin chains induced by the presence of polyiodide ions. With heating above $254^{\circ}C$, the iodine component introduced intermolecular cross-linking of SF, and the melt flow of the sample was inhibited. The thermal decomposition stability of fibroin molecules was greatly enhanced by iodine treatment.

Nuclear Magnetic Resonance Spectroscopic Study on Inclusion Complexation of Paracyclophane with Naphthalene Derivatives in Aqueous Solution (프로톤 핵자기공명스펙트럼 측정법에 의한 수용액중 파라시클로판과 나프탈렌 유도체들간의 포접 복합체 형성에 관한 연구)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.155-163
    • /
    • 1993
  • Inclusion complexation of 1,7,21,27-tetraaza[7.1.7.1]paracyclophane (CPM 55) with 2,7-dihydroxynaphthalene (2,7-DHN) or 1,3-dihydroxynaphthalene (1,3-DHN) in pD 1.17 $DCl-D_2O$ solution was investigated by $^1H$ nuclear magnetic resonance spectroscopy (NMR) using 4,4'-dimethylaminodiphenylmethane (ACM 11) as an acyclic analog of CPM 55. In CPM 55-naphthalene derivative complex, alkyl protons located in the cavity of CPM 55 were shown to be subjected to anisotropic shielding and protons of naphthalene moiety shifted remarkably to upfield. However, in ACM 11-naphthalene derivative systems, chemical shifts for protons of both DHN compounds were not significant. The remarkable chemical shift changes suggested that the naphthalene moiety of 2,7-DHN or 1,3-DHN was included in the hydrophobic cavity of CPM 55 in aqueous solution. From the continuous variation plots of induced chemical shifts of 2,7-DHN, it was found that 2,7-DHN was included in the cavity of CPM 55 at 1:1 molar stoichiometry. Both computer simulation of a inclusion complex and strong upfield chemical shift changes of 2,7-DHN protons supported the conformation of pseudoaxial inclusion as the presumed geometry of the host-guest complex.

  • PDF

A Synthesis of Sulfonyl Urea Derivatives in Aqueous Media (수용액에서 술포닐 우레아 유도체들의 합성)

  • Lee, Chun-Soo;Yoon, Mu-Hong;Choe, Seok-Burn;Rho, Seung-Baik
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.100-110
    • /
    • 1992
  • Arylsulfonyl urea derivatives can be easily prepared in good yield by treating amines with arylsulfonyl carbamates in aqueous solution : 1) N-Arylsulfonyl-N'-aryl urea derivatives, 2) N-Arylsulfony-N'-alkyl urea derivatives, 3) N-Arylsulfonyl-N'- heterocyclic urea derivatives. The proposed reaction mechanisms for preparing arylsulfonyl ureas involve formation of an ion-pair conformation by initial acid-base reaction, then formation of a so-called tetrahedral intermediate by nucleophilic addition, followed by an acid-catalyzed elimination of an alkoxide ion and loss of a proton.

  • PDF

Structural Characteristics of Regenerated Antheraea pernyi Silk Fibroin Film treated with ethanol (에탄올처리 재생 작잠 견피브로인 필름의 구조 특성)

  • 우순옥;권해용;엄인철;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.114-119
    • /
    • 2000
  • Effects of ethanlo treatment on the structural and thermal characteristics of regenerated Antheraea pernyi silk fibroin (RSF) were investigated. Infrared spectroscopy and X-ray diffractometry showed that the conformational transition of RSF might be affected by concentration of ethanol and its treatment time. The structure of RSF was rapidly changed from random coil to $\beta$-sheet conformation when RSF was treated with les than 75% ethanol concentration. However, RSF treated with ethanol(100%) did not show conformational change. Differential scanning calorimetry showed that exotherm at 232$\^{C}$ disappeared and the intensity of endotherm at 228$\^{C}$ decreased with treatment of 75% ethanol. Dynamic thermal analysis showed that loss modulus (E") and tan $\delta$$\_$E/ of RSF treated with aqueous ethanol was broaden and shifted to higher temperature in comparison with those of untreated RSF.

  • PDF