• Title/Summary/Keyword: aqueous/organic two-phase

Search Result 39, Processing Time 0.023 seconds

Drop formation at submerged nozzles: Comparison of aqueous dispersed and organic dispersed cases for TBP-dodecane and nitric acid system

  • Roy, Amitava;Darekar, Mayur;Singh, K.K.;Shenoy, K.T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.761-768
    • /
    • 2019
  • Understanding the phenomena of formation of single drops is necessary to understand the hydrodynamics in solvent extraction equipment which are used for separation of nuclear materials. In this work, the phenomena of aqueous phase and organic phase drop formation at submerged nozzles are compared by conducting experiments with 30%TBP (v/v) in dodecane as the organic phase and nitric acid as the aqueous phase. Two different nozzles and three different nitric acid concentrations are used. For each nozzle and nitric acid concentration, velocity of the dispersed phase is varied. Drops of aqueous phase formed at downward oriented nozzles submerged in organic phase are observed to be smaller than the drops of organic phase formed at upward oriented nozzles submerged in aqueous phase. Correlations to estimate drop diameter are proposed.

Optimization of Catechol Production Using Immobilized Resting Cells of Pseudomonas putida in Aqueous/organic Two-phase System

  • Chae, Hee-Jeong;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.345-351
    • /
    • 1997
  • An aqueous/organic two-phase reaction system was applied to the production of catechol using immobilized resting cells of Pseudomonas putida CY 400. Water/ethyl ether system was used because of high partition coefficient of catechol and thus to reduce the product inhibition and degradation. Among the tested immobilization carriers, polyacrylamide gel gave the highest catechol productivity. The immobilization seemed to protect the cells against solvent toxicity. From the simulation of reaction conditions based on two-phase models, it was found that there was an optimum acetate concentration at fixed benzoate and cell concentrations for the catechol productivity. A lower phase volume ratio (lower fraction of organic phase) gave a higher productivity. However, the substrate conversion was low at low phase volume ratio.

  • PDF

Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System (유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산)

  • 이인영;안경섭;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 1992
  • The synthesis of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester(ZAPM), a precursor of aspartame, from N-benzyloxycarbonyl-L-aspartic acid(Z-Asp) and L-phenylalanine methyl ester hydrochloride(L-PM-HCl) was investigated in ethylacetate-MES buffer two-phase system using thermolysin. In organic two-phase system, the degree of spontaneous hydrolysis of L-PM. HCl was significantly reduced with increasing the volume ratio of organic to aqueous phase. Stability of thermolysin in organic two-phase system was found to be higher than that in MES buffer solution. More than 90% of initial enzyme activity was maintained after 10 days of incubation in case that the volume of organic phase was equal to that of buffer phase, while the half life of thermolysin was about 2 days in aqueous buffer solution. The results of partitioning of substrates and product in organic two-phase system showed that the difference in partition coefficients between substrates and product was maximum at pH 5.5. The optimal pH for 2-APM synthesis in organic two-phase system was found to be 5.5-5.8, which is consistent with the value expected from the partition experiments. As the concentration of substrates was increased the conversion yield of Z-APM was increased with concomitant reduction of L-PMqHC1 hydrolysis. In case that the concentration of L-PM-HCl and Z-Asp were 160 mM and 80 mM respectively, the conversion yield of Z-APM reached 90% after 28 hrs of reaction. The yield obtained at different volume ratio of organic phase compares well with the predicted equilibrium constant in biphasic system.

  • PDF

Production of enantiopure epoxides by yeast epoxide hydrolase using a two-phase membrane bioreactor (한국생물공학회 정기총회 및 연구논문발표회 발표논문)

  • Choe, Won-Jae;Choe, Cha-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.145-148
    • /
    • 2000
  • Large-scale resolution of epoxides by the yeast Rhodotorula glutinis was demonstrated in an aqueous/organic two-phase cascade membrane bioreactor. Due to the chemical instability and low solubility of epoxides in aqueous phases, an organic solvent was introduced into the reaction mixture in order to enhance resolution of epoxide. A cascade hollow-fiber membrane bioreactor was used (i) to minimize the toxicity of organic solvents towards the epoxide hydrolase of Rhodotorula glutinis, and (ii) to remove inhibitory amounts of formed diol from the yeast cell containing aqueous phase. Dodecane was selected as a suitable solvent and 1,2-epoxyhexane as a model substrate. By use of this membrane bioreactor, highly concentrated (0.9 M in dodecane) enantiopure (>98% ee) (S)-1,2-epoxyhexane (6.5 g, 30% yield) was obtained from its racemic mixture.

  • PDF

Development of a Novel Bioreactor System for the Treatment of Gaseous Benzene

  • Yeom, Sung-Ho;Daugulis, Andrew J.;Yoo, Young-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.73-76
    • /
    • 2000
  • A novel, continuous bioreactor system combining a bubble column (absorption section) and a two-phase bioreactor (degradation section) has been designed to treat a gas stream containing benzene. The bubble column contained hexadecane as an absorbent for benzene, and was systemically chosen considering physical, biological, environmental, operational and economic factors. This solvent has infinite solubility for benzene and very low volatility. After absorbing benzene in the bubble column, the hexadecane served as the organic phase of the two-phase partitioning bioreactor, transferring benzene into the aqueous phase where it was degraded by Alcaligenes xylosoxidans Y234. The hexadecane was then continuously recirculated back to the absorber section for the removal of additional benzene. All mass transfer and biodegradation characteristics in this system were investigated prior to operation of the integrated unit, and these included: the mass transfer rate of benzene in the absorption column, the mass transfer rate of benzene from the organic phase into the aqueous phase in the two-phase bioreactor, the stripping rate of benzene out of the two-phase bioreactor, etc. All of these parameters were incorporated into model equations, which were used to investigate the effects of operating conditions on the performance of the system. Several experiments were conducted to show the feasibility of this system. This process is believed to be very practical for the treatment of high concentrations of gaseous pollutants.

  • PDF

Development of centrifugal extractor for organic phase extraction using a height controlled separation weir and a divert plate (분리 웨어의 상하 조절과 전형판을 이용한 유기상 원심추출기 개발)

  • 김영환;윤지섭;정재후;홍동희;박기용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.515-518
    • /
    • 1997
  • Resident time of the centrifugal extractor for organic phase extraction using a height controlled separator weir and a divert plate is the important factor that affects significantly the chemical material extraction and the productivity in the chemical and mechanical processes. In this paper, it describes the design of the device for extraction of an organic phase from radioactive wastes, and considers phase separating weir and divert disk, both being designed to be adjustable in their positions, for effectively separating an organic phase. A height-adjustable separating weir unit used for separating the organic phase from the aqueous phase using a phase separating weir and designed to control the height of the separating weir as desired so as to allow the weir to be positioned at a boundary layer between two separated phases. The centrifugal extractor controls satisfactorily the mixed reaction time of two phases within the separator regardless of the variations of the mixing ratio of the two phases and the rotating speed of the extractor, is designed to be adjustable in its position in the vertical direction, thus allowing the user to appropriately select the mixed reaction time of the two phases within the extractor as desired. From development of a centrifugal extractor, it can effectively recover such usable elements, and preferably reducing the output quantity of radioactive wastes.

  • PDF

Morphology of Sub-Microscale Atmospheric Aerosols composed of Two Liquid Phases According to the Loading Ratio of Organics/Water

  • Yoo, Kee-Youn
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.130-134
    • /
    • 2017
  • Organic aerosols dispersed in the atmosphere likely undergo phase separation. Such internally mixed particles are often described as comprising an organic phase and an aqueous phase separately. We studied the morphology of two liquid separated aerosols in the sub-microscale by using a simple thermodynamic model with Russian doll geometry. The morphology of particles can be easily predicted from the simple criteria on the surface tension and two algebraic equations (the volume constraint and Young equation). This result may give the potential explanation about the complex morphology of the organic airborne particles.

The Synthesis of Kyotorphin Derivative by $\alpha$-Chymotrypsin ($\alpha$-Chymotrypsin 을 이용한 Kyotorphin 유도체의 합성)

  • Jeon, Yu Jin;Kim, Se Gwon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.449-455
    • /
    • 1994
  • In order to obtain the basic data for synthetic studies of bioactive peptide using enzyme, Kyotorphin(analgesic peptide) derivative was synthesized from Ac-Tyr-OH and $Arg-NH_2$ by $\alpha-chymotrysin$ in two phase system(organic phase and aqueous phase). In effect of organic solvent on Kyotorphin derivative synthesis from Ac-Tyr-OH(10 mM) and $Arg-NH_2$ (20 mM), the synthesis in ethyl acetate system of organic solvents was higher than those in other organic solvents (n-butanol, n-hexane, dichloromethane and chloroform). The optimal conditions for the synthesis are as follows: enzyme conc., 10 ${\mu}M;$ reaction pH, 7.0; reaction temp., $35^{\circ}C$ ; the ratio of organic phase volume/aqueous phase volume $(\alpha)$, 15. Under the optimal conditions, the yield was 70.2%, and the reaction achieved to equilibrium after 24 hrs.

  • PDF

Improvement of Hydrocarbon Recovery by Two-Stage Cell-Recycle Extraction in the Cultivation of Botryococcus braunii

  • An, Jin-Young;Sim, Sang-Jun;Kim, Byung-Woo;Lee, Jin-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.932-937
    • /
    • 2004
  • In situ extraction by organic solvent was studied in order to improve the recovery yield of hydrocarbon from the culture of Botryococcus braunii, a green colonial microalga. When the solvent mixture of octanol as an extractive solvent and n-octane as a biocompatible solvent was added to a two-phase column, the algal growth was seriously inhibited, even at a low concentration of polar octanol. Therefore, a two-stage cell-recycle extraction process was proposed to improve the contact area between the organic phase and the aqueous phase. The hydrocarbon recovery with in situ cell-recycle extraction showed a three-fold increase (57% of cell) in yield over that with two-phase extraction. In addition, over 60% of the hydrocarbon could be recovered without serious cell damage by downstream separation when this process was applied to the culture broth after batch fermentation.

Production of L-Tryptophan by Enzymatic Processes (효소공정에 의한 트립토판 생산)

  • 이인영;안경섭;김의환;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.73-78
    • /
    • 1992
  • - Enzymatic synthesis of L-tryptophan(Trp) using E. coli tryptophanase has been investigated. In order to reduce the substrate inhibition by indole and to increase the product yield of L-tryptophan three different approaches have been made in this work. First, indole was intermittently fed to the reaction mixture in order to control the indole concentration at lower level. When 15 mM of indole was used as a total amount of substrate, conversion yield of 80% has been obtained with intermittent feeding while only 20% of indole was converted into L-tryptophan by conventional batch operation, The second method employed in this work was the use of cyclohexane-phosphate buffer organic two-phase system. In this system, indole was mainly partitioned into the organic-solvent phase and therefore substrate inhibition was expected to be reduced. L-Tryptophan production in organic two-phase system was, however, unexpectedly lower than that obtained in aqueous buffer solution. As a third method cyclodextrins have been added to the aqueous reaction mixture. It was found that the addition of $\beta$-cyclodextrin enhanced the tryptophan synthesis noticeably while $\alpha$-cycfodextrin showed little effect on tryptophan production.

  • PDF