• Title/Summary/Keyword: aquatic sediment

Search Result 279, Processing Time 0.024 seconds

Chemical Contamination and Toxicity of Sediments from the Gunsan Coast, Korea

  • Lee, Wan-Seok;Choi, Minkyu;Hwang, Dong-Woon;Lee, In-Seok;Kim, Sook Yang
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-250
    • /
    • 2012
  • Polycyclic aromatic hydrocarbons (PAHs), butyltins (BTs), nonylphenol (NP), and fecal sterols concentrations in sediments were investigated from Gunsan coast of Korea to evaluate organic pollution from anthropogenic activities. Sediment toxicity was also examined by bacterial bioluminescence toxicity test (Vibrio fischeri). The concentrations of 16 PAHs in sediments ranged from 67.9 to 425 ng/g dry wt; BTs ranged from 2.79 to 14.1 ng Sn/g dry wt; NP ranged from 20.7 to 2171 ng/g dry wt; and coprostanol, a fecal sterol, ranged from 7.60 to 245 ng/g dry wt. Effective concentration 50% ($EC_{50}$) of sediments ranged from 0.38 to 23.8 mg/mL. Most of the chemicals were present at levels lower than or comparable to the previously reported values from Korea. However, NP levels in the present study were in the high range of levels reported from the Korean coast, and 40% of the measured samples exceeded screening and ecotoxicological values of NP suggested by the Netherlands and Canada. This suggests that an ongoing source of NP is a serious concern in the Gunsan coast. High levels of contaminants were found in the proximity of potential sources, such as the outfall of a wastewater treatment plant for NP, an anthracite-fired power plant for PAHs, and ports for BTs, fecal sterols, and sediment toxicity. This indicates that Gunsan coast has various potential sources of marine sediment contaminants.

Analysis the depth effect of organic pollutants and heavy metals using biostimulant ball in contaminated coastal sediments (해양오염저질의 오염물질 정화를 위한 생물활성촉진제 투여 깊이 연구)

  • Song, Young-chae;Woo, Jung-Hui;Subha, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • Sediments play a major role in determining pollution pattern in aquatic systems and reflecting the pollutant deposition. In the present study analysis the depth effect of organic pollutants and heavy metals using slow release biostimulant ball (BSB) in coastal sediment. BSB size fixed at 3cm, depth varied from 0cm to 10cm depth and 1 and 3 month interval period was carried out for the study. The organic pollutants of chemical oxygen demand, total solids and volatile solids were significantly changed at the surface sediment (0cm)in 1 month and 3 month interval time using BSB. In contrast, sediment depth increase upto 10cm the reduction percentage decrease like to control. Vertical distribution of heavy metals are not consistent from the surface layer toward the bottom layers. Heavy metals fractions were significantly changes, the exchangeable fraction was reduced and other organic and residual fractions were stabilized percentage are increased. This finding concluded BSB is effective for reduce organic pollutants, heavy metals stabilization from the contaminated sediment.

  • PDF

Distribution of Heavy Metals in Sediment Cores Collected from the Nakdong River, South Korea

  • Magalie, Ntahokaja;Lee, Jiyeong;Kang, Jihye;Kim, Jeonghoon;Park, Ho-Jin;Bae, Sang Yeol;Jeong, Seok;Kim, Young-Seog;Ryu, Jong-Sik
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.412-424
    • /
    • 2021
  • Understanding the distribution of heavy metals in sediment is necessary because labile heavy metals can partition into the water column and bioaccumulate in aquatic organisms. Here we investigated six heavy metals (Co, Cu, Mn, Ni, Pb, and Zn) in sediment cores using a five-step sequential leaching method to examine the occurrence of heavy metals in the sediment. The results showed that all elements, except Mn, are depleted in the exchangeable and carbonate fractions. However, heavy metal concentrations are much higher in the Fe-Mn oxide and organic matter fractions, especially for Cu, indicating enrichment in the organic matter fraction. Furthermore, contamination parameters (contamination factor and geoaccumulation index) indicate that Mn contamination is high, primarily derived from anthropogenic sources, presenting a potential risk to ecosystems in the Nakdong River.

Physical and Acoustic Properties of Sediment around the Yeosu Sound (여수해만 주변해역 퇴적물의 물리적 및 음향학적 성질)

  • KIM Gil-Young;SUNG Jun-Young;KIM Dae-Choul;KIM Jeong-Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.434-444
    • /
    • 1994
  • Physical and acoustic properties of sediment core samples recovered from the Kwangyang Bay, the Yeosu Sound, and the inner shelf of central South Sea, Korea were investigated. Compressional wave velocity, density, porosity, and shear strength were measured at 10cm interval's along the core depth. Sediment texture(grain size, sand, silt, and clay contents) were also measured and correlated with the physical properties(density, porosity, and shear strength). The physical and acoustic properties of the sediment changed gradually from the Kwangyang Bay to the shelf area in accordance with the distance from the input source of the terrigenous sediment. The Yeosu Sound acted as a route of sediment transport from the estuary(the Seomjin River) to the shelf and vice versa. The physical and acoustic properties of the Yeosu Sound sediment conformed to an intermediate stage between river mouth and shelf areas. These results can be utilized to trace the influence of the Seomjin River on the so-called mud belt of Korea.

  • PDF

Analyzing Recovered Effects of Marine Contaminated Sediment Cleanup Project on Fisheries Resources (해양오염 퇴적물 정화사업의 어업자원회복 및 수산물 소비회복효과분석)

  • Pyo, Hee-Dong
    • The Journal of Fisheries Business Administration
    • /
    • v.40 no.3
    • /
    • pp.29-49
    • /
    • 2009
  • There are various types of predictable economic benefits to restoring beneficial uses from contaminated marine sediment cleanup. These benefits can be derived from reduction in aquatic animals died or infected, increase in their consumption recovery, increase in tourism including recreational fishing, reduction in human health risk, increase in amenity and aesthetics, increase in ecosystem integrity, and so on. The paper focuses on estimating the net increase in value for producers and consumers from producing and consuming those fish due to the pollution reduction of marine contaminated cleanup project. Almost Ideal Demand System(AIDS) is employed for estimate of the demand for fish, and the production cost function for fish are determined using market data. The result shows 10.8 billion won per year for economic surplus to the net increase for producers and consumers.

  • PDF

Recycling Marine Fish Farm Effluent by Microorganisms (유용미생물을 이용한 육상수조식 양식장 배출물의 재활용)

  • 문상욱;이준백;이영돈;김세재;강봉조;고유봉
    • Journal of Aquaculture
    • /
    • v.15 no.4
    • /
    • pp.261-266
    • /
    • 2002
  • The effluent sediment from the land-based seawater fish farms of Jeju consists of proteins, fats, ash and moisture. An evaluation of the effluent sediment as substrate for growth of phototrophic or lactic acid bacteria revealed that the sediment supported the growth of phototrophic bacteria but could support lactic acid bacteria only on supplementation with sugar. The possibility of using phototrophic bacteria for recycling the land-based seawater fish farm effluent is shown.

A Study on the Releasing Characteristics of Organic Matter and Heavy Metals and Changes of Dissolved Oxygen Concentration during Sediment Resuspension (퇴적물 재부유에 따른 유기물과 중금속 용출 및 용존산소량 변화 특성에 대한 연구)

  • Kang, Seon Gyeong;Lee, Han Saem;Lim, Byung Ran;Rhee, Dong Seok;Shin, Hyun Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The depletion of dissolved oxygen (DO) in urban streams has a profound effect on the aquatic ecosystem; however, the change in DO by resuspension of sediments and the cause have not been sufficiently investigated. In this study, the physicochemical properties (particle size, and the content of organic and heavy metals) of the sediments of an urban stream (Anyang Stream) and the characteristics of water quality changes (DO, dissolved organic carbon (DOC), dissolved nitrogen (DN), sediment oxygen demand (SOD), and adenosine triphosphate (ATP)) by sediment resuspension were investigated. The sediment content of fine particles (< 0.2 mm) increased from 36.7% to 52.7% from the upstream to the downstream, and the contents of heavy metals and organic matter of the sediment were also higher towards the downstream. The depletion of DO by resuspension was observed in the sediment at the downstream sites (P8, P9), where the fine particle content was high, and biological SOD (BSOD) was more than 88% compared to the total SOD. The increase in BSOD coincided with the increase in ATP. It was also confirmed that the depletion of DO could increase the amount of heavy metals (such as Fe, Mn, and Pb) released from the sediment. Based on the above results, it can be concluded that resuspension of sediments induces rapid water quality changes and may cause accidents, such as fish mortality, during rainfall, and such a water quality effect can be more pronounced in sediments with a high content of fine particles and organic matter and high biological activity.

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

Simulation of the Best Management Practice Impacts on Nonpoint Source Pollutant Reduction in Agricultural Area using STEPL WEB Model (STEPL WEB 모형을 이용한 농촌지역 비점오염원저감 대책 모의)

  • Park, Youn Shik;Kum, Dong Hyuk;Jung, Young Hun;Cho, Ja Pil;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.21-27
    • /
    • 2014
  • Sediment-laden water is problematic in aquatic ecosystem and for hydraulic structures in a watershed, and agriculture area in a watershed is one of source areas of nonpoint source (NPS), since soil surface typically exposures due to agricultural activities. Especially, severe sediment might flow into stream when agricultural area is located near stream like the Imha-dam watershed. Soil erosion is affected by precipitation, therefore there is a need to consider precipitation characteristics in soil erosion and best management practices (BMPs) simulation. The Web-based Spreadsheet Tool for the Estimation of Pollutant Load (STEPL WEB) allows estimating long-term sediment loads and the impact of best management practices to reduce sediment loads. STEPL WEB and predicted precipitation data by MIROC-ESM model was used to estimate sediment loads and its reduction by filter strip and conversion of agricultural area to forest in the future 30 years. The result indicates that approximately 70 % of agricultural area requires filter strip installation or that approximately 50 % of agricultural area needs to be converted to forest, for 41 % of sediment load reduction.

Impact Assessment of Suspended Sediment on Benthic Invertebrates in River - Experiments with Glyptotendipes tokunagai - (부유사에 의한 하천 저서성 무척추동물의 영향 평가 - 조각깔따구 대상의 실험 -)

  • Taeuk Kang;Cheol Ung Jeong;Myoung Chul Kim;Namjoo Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.35-42
    • /
    • 2024
  • The aquatic ecosystem of rivers, where various biological groups inhabit, is influenced by suspended sediment. However, there is a lack of quantitative and objective methods and criteria for evaluating this impact. The purpose of this study is to analyze through experiments the effects of suspended sediment on Glyptotendipes tokunagai, a benthic invertebrate in rivers. Experiments were conducted to investigate the survival count of individuals exposed to varying suspended sediment concentrations (turbidity) and exposure durations. Various regression analysis methods were performed on the experimental results to propose a model for evaluating the impact of suspended sediment on Glyptotendipes tokunagai. The coefficient of determination (R-squared) of the proposed model was 0.903, indicating a high degree of fit. The findings of this study could serve as foundational data for assessing the influence of suspended sediment on various organisms inhabiting rivers.