• Title/Summary/Keyword: aquatic macrophytes

Search Result 50, Processing Time 0.025 seconds

Effect Analysis of Reservoir Water Quality Improvement with Floating Islands (인공식물섬의 호소 수질개선 효과분석(지역환경 \circled2))

  • 박병흔;권순국;윤경섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.550-556
    • /
    • 2000
  • Three floating islands were constructed on the surface of the reservoir, each consisting of 10 16-㎡ (4${\times}$4 m) segments, made of wood frames and floats. Three species of aquatic macrophytes were planted in each island on June, 1998. Phragmites australis was considered as the suitable aquatic macrophyte for the floating islands since it maintained the most efficient root and shoot balance among the macrophytes. The net primary productivity of P. Australis was 3,604 g/㎡ based on dry weight in 1999, with uptake rates of nitrogen and phosphorus estimated at 77.4 g/㎡/yr and 5.7 g/㎡/yr, respectively. The result of water quality simulation for the floating islands showed that, through adsorption of nutrients and light screening, they could reduce the amount of phytoplankton, thereby decreasing COD concentration.

  • PDF

Selection of Suitable Plants for Artificial Floating Islands - Comparisons of Vegetation Structure and Growth of Four Emergent Macrophytes (인공 식물섬에 적합한 식물의 선발 - 4종 정수식물의 식생구조와 생장의 비교)

  • Lee, Hyo Hye Mi;Kwon, Oh Byung;Suck, Jeong Hyun;Cho, Kang-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • The floating islands have been constructed for the water quality improvement and the biodiversity conservation in an disturbed aquatic ecosystem. We made floating islands consisted of a special float and substrates of coconut fibers implanted with four emergent macrophytes such as Phragmites australis, Zizania latifolia, Iris pseudoacorus, Typha angustifolia. Vegetation structure and plant growth were compared between on the floating islands and on ground in order to select suitable plants for the construction of floating islands. Emergent-macrophytic vegetation on the floating islands showed lower coverages and higher plant biodiversity due to natural introduction of various hydrophytes and hygrophytes. Shoot density was increased on floating islands except for Zizania latifolia. From the point of coverage and density of plants, Phragmites australis and Iris pseudoacorus were suitable for floating islands. Total biomass of emergent macrophytes was decreased on the floating islands. The belowground/aboveground biomass ratio of floating islands was higher than that of the ground. Out of planted macrophytes, Iris pseudoacorus with a high belowground/aboveground biomass ratio could be evaluated a suitable plant for the floating islands because a plenty of its root is profitable to adapt with the nutrient-limited environment of floating islands.

  • PDF

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.

A Study on the Removal of Pollutants from Wastewater by Aquatic Macrophytes (수생식물에 의한 폐수의 오염물질제거에 관한 연구)

  • Cho, Hae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.941-946
    • /
    • 2012
  • Macrophyte plays an important role in purification of wastewater. They have capacity to improve the water quality by absorbing nutrients, with their effective root system. In this study, removal of nutrient as well as organic matter was observed by some important macrophytes i.e. Pistia stratoites, Hydrocharis dubia and Salvinia sp. indepe ndently as well as in mixed culture under the laboratory condition. The highest total nitrogen removal was observed for Pistia stratoites (86.47%) in monoculture and Salvinia sp. + P. stratoites (76.11%) in mixed culture system. Corresponding figures for total phosphorous were observed for P. stratoites (75.60%) in monoculture and Salvinia sp. + P. stratoites (71.11%) in mixed culture system. Similar result was observed for ammonia removal in both systems. Additionally, P. stratoites showed the highest removal of organic matter, in monoculture system (68.46%) where as Salvinia sp. + P. stratoites showed the highest removal of organic matter in mixed culture system (82.73 %).

Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

  • Khatun, Amina;Pal, Sandipan;Mukherjee, Aloke Kumar;Samanta, Palas;Mondal, Subinoy;Kole, Debraj;Chandra, Priyanka;Ghosh, Apurba Ratan
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.21.1-21.7
    • /
    • 2016
  • Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn ($205.0{\pm}65.5mg/kg$)>Cu ($29.9{\pm}10.2mg/kg$)>Pb ($22.7{\pm}10.3mg/kg$)>Cd ($3.7{\pm}2.2mg/kg$). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation (p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta.

Fisheries in Lake Tinishu Abaya (Ethiopia) could be managed using dietary nature of Nile tilapia (Oreochromis niloticus L. 1757)

  • Yirga Enawgaw Anteneh;Solomon Wagaw Mamo;Minichil Addis Tilahun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.8
    • /
    • pp.491-499
    • /
    • 2023
  • Lake Tinisu Abaya is home to some fish species. The lake's native fish species include Barbus and Tilapia zilli. Tilapia fish (Oreochromis niloticus L.) were stocked in Lake Tinishu Aabaya in 1997. This study aimed to investigate the feeding behaviors of O. niloticus in Lake Tinishu Abaya to develop an appropriate fisheries management approach in the lake. 428 O. niloticus fish samples (2.5 to 30.9 cm and 1.1 to 475 g) were collected to calculate the diet composition. Out of the total of 428 gut contents examined, 55 (12.85%) were found to be empty and 373 (87.15%) to be containing one or more food items. The diet behavior of the stocked fish in the study lake revealed that phytoplankton (39.5% by volume) and macrophytes (25.81% by volume) were the most noteworthy food items followed by detritus (14.39%) and zooplankton (12.95%). With increasing fish size, the importance of phytoplankton, macrophytes, and detritus increased while the contribution of zooplankton, insects, and other foods with an animal origin decreased. Seasonal variation in the diet composition of fish was evident (t-test; p < 0.05). Macrophytes, zooplankton, and detritus were the dominating food items during the wet season, while phytoplankton predominated during the dry season. This study demonstrated that O. niloticus had phytoplanktivores that primarily consumed phytoplankton and that the seasons and fish size had a significant impact on their feeding preferences. The diet of O. niloticus in Lake Tinishu Abaya comprised foods with both plant and animal origins. It concludes that the dietary habit of O. niloticus in the lake is, generally, the omnivorous type.

Spatial Distribution Pattern of Cladoceran Community in Accordance with Microhabitat Types (미소서식처 유형별 지각류 (Cladocerans)의 분포 특성)

  • Jong-Yun Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.324-337
    • /
    • 2024
  • Aquatic macrophytes are important factors in determining species diversity and abundance of cladocerans, but the effects of cladocerans on plant species composition or structure have not been fully considered. In South Korea, wetlands and reservoirs that are prone to covering aquatic macrophytes are scattered across the country, so it is necessary to consider on aquatic macrophytes study, when aquatic animals including cladoceran were studied. in this study, the species and abundance of cladocerans community in six microhabitat types are investigated, and based on these results, habitat conservation and efficient management are suggested. The high species numbers and abundance of cladocerans communities were found in mixed plant communities consisting of free-floating, floating-leaved, and submerged plants. The inclusion of submerged plants in plant communities contributes significantly to the complexity of habitat structures, and may increase species and abundance of cladocenran communities. This can be compared to a plant community consisting only of free-floating and floating-leaved plants in the absence of submerged plants, thereby identifying the efficiency of submerged plants. In the mixed plant communities, species diversity was the highest due to the emergence of cladoceran species (Graptoleveris testudinaria, Ilyocryptus spinifer, and Leydigia acanthococcides) absent from other plant communities. The gradual increase in the biomass (g) of submerged plants in the mixed plant communities significantly increased the species numbers and abundance of cladoceran communities (p<0.05). This is strong evidence that the increase of submerged plants in mixed plant communities has a positive effect on efficiency as a habitat for cladocerans. Although submeged plants do not contribute significantly to their landscape/aesthetic value because they are submerged in water, they have the effect of increasing species diversity in terms of biology, so they should be considered important when creating/restoring wetlands.

Importance of substrate material for sustaining the bryozoan Pectinatella magnifica following summer rainfall in lotic freshwater ecosystems, South Korea

  • Choi, Jong-Yun;Joo, Gea-Jae;Kim, Seong-Ki;Hong, Dong-Gyun;Jo, Hyunbin
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.375-381
    • /
    • 2015
  • We investigated the influence of summer rainfall on Pectinatella magnifica colonies in lotic ecosystems. Of the examined substrate materials, branches and aquatic macrophytes supported more colonies of P. magnifica than that by stones or artificial materials. The influence of rainfall on P. magnifica colonies differed in accordance with the type of substrate material at each study site. In the Geum River, little difference was noted in the number of P. magnifica colonies on branches before ($mean{\pm}SE$, $24{\pm}7.3$ individuals) and after rainfall ($20{\pm}8.4$ ind.); other substrate types supported fewer colonies of P. magnifica after rainfall. In contrast, in the Miryang River, rainfall had minimal effect on the number of P. magnifica colonies supported by macrophytes ($13{\pm}3.8$ and $12{\pm}4.3$ ind., respectively). Artificial material was more abundant in the Banbyeon Stream where it was able to support more colonies of P. magnifica. We found that the structure of different substrates sustains P. magnifica following rainfall. In the Miryang River, free-floating and submerged plants with a relatively heterogeneous substrate surface were the dominant macrophytes, whereas in the Geum River, simple macrophytes (i.e., emergent plants) were dominant. Therefore, we conclude that the substrate type on which P. magnifica grows plays an important role in resisting physical disturbances such as rainfall.

Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond: Part II, Macrophytes and fish

  • Aleksei Panov ;Alexander Trapeznikov;Vera Trapeznikova ;Alexander Korzhavin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.707-716
    • /
    • 2023
  • The influence of waste technological waters of thermal and fast reactors of Beloyarsk NPP (Russia) on the accumulation of 60Co, 90Sr and 137Cs in macrophytes and ichthyofauna of the cooling pond has been studied. Critical radionuclides, routes of their entry into the ecosystem and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at the Beloyarsk NPP, based on fast reactors, has a much smaller effect on the release of artificial radionuclides into the environment. Therefore, during the entire period of monitoring studies (1976-2019), the decrease in the specific activity of radionuclides of NPP origin in macrophytes was 13-25800 times, in ichthyofauna 1.5-44.5 times. The maximum discharge of artificial radionuclides into the Beloyarsk reservoir was noted during the period of restoration and decontamination work aimed at eliminating the emergencies at the AMB reactors of NPP. The factors influencing the accumulation of artificial radionuclides in the components of the freshwater ecosystem of the Beloyarsk cooling pond have been determined, including: the physicochemical nature of radioisotopes, their concentration in surface water, the temperature of the aquatic environment, the trophicity of the reservoir, the species of hydrobionts.

Influene of aquatic macrophytes on the interactions among aquatic organisms in shallow wetlands (Upo Wetland, South Korea)

  • Jeong, Keon-Young;Choi, Jong-Yun;Jeong, Kwang-Seuk
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.185-194
    • /
    • 2014
  • Seasonal monitoring was implemented to understand the influence of macrophyte bed structure on the composition and trophic interaction of aquatic organisms (algae, zooplankton, macro-invertebrate, and fish) in a shallow wetland (Upo Wetland, South Korea). Distinct division of the plant assemblage (reed zone and mixed plant zone) was observed. The reed zone was composed solely of Phragmites communis, whereas the mixed plant zone comprised a diverse macrophyte assemblage (Salvinia natans, Spirodela polyrhiza, Trapa japonica, Ceratophyllum demersum, and Hydrilla verticillata). Most of the aquatic organisms were more abundant in the mixed plant zone than in the reed zone, and this was positively associated with the seasonal development of macrophyte cover. Stable isotope analysis showed seasonal interactions among aquatic organisms. The majority of aquatic animal (zooplankton, Odonata, and Ephemeroptera) were dependent on epiphytic particulate organic matter (EPOM), and the dependence on EPOM gradually increased toward autumn. Interestingly, Lepomis macrochirus consumed Ephemeroptera and zooplankton in both macrophyte zones, but Micropterus salmoides depended on different food items in the reed zone and the mixed plant zone. Although, M. salmoides in the reed zone showed food utilization similar to L. macrochirus, it consumed Odonata or small L. macrochirus in the mixed plant zone. Based on these results, it appears that differences in the structure of the two macrophyte zones support different assemblages of aquatic organisms, strongly influencing the trophic interactions between the aquatic organisms.