Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination of agricultural soils and crops in the these areas. To compare of environmental assessment of heavy metals in tailings derived from various 25-metalliferous mines in Korea, 3 different analysis methods such as water soluble, 0.1 M-HCl extractable, and total acid digestion method (aqua regia) were used. The chemical composition of water soluble in mine tailing were in the order ${SO_4}^{2-}>Ca^{2+}>Mn^{2+},\;Na^+,\;Al^{3+}>Mg^{2+},\;Fe^{3+}>Cl^-$. Specially, pH, EC, ${SO_4}^{2-},\;and\;Ca^{2+}$ concentrations in tailing varied considerably among the different mines. The average total concentrations of Cd, Cu, Pb, Zn, and As in tailing were 31.8, 708, 4,961, 2,275 and 3,235 mg/kg, respectively. Specially, the contents of Cd, Zn and As were higher than those of countermeasure values for soil contamination (Cd : 4, Zn : 700 and As : 15 mg/kg in soil) by Soil Environmental Conservation Act in Korea. The rates of water soluble heavy metals to total contents in tailings were in the order Cd > Zn > Cu > Pb > As. The rates of 0.1M-HCl extractable Cd, Cu, Pb, Zn, and As (1M-HCl) to total content were 17.4, 10.2, 6.5, 6.8 and 11.4% respectively. The enrichment factor of heavy metals in tailings were in the order As > Pb > Cd > Cu > Zn. The pollution index in tailing Au-Ag mine tailing were higher than those of other mine tailing. As a results of enrichment factor and pollution index for heavy metal contaminations in mine tailing of metalliferous mines, the main contaminants are mine waste materials including tailings.