• Title/Summary/Keyword: apriori

Search Result 145, Processing Time 0.029 seconds

An Efficient Algorithm for Mining Association Rules using a Compound Hash Tree (복합 해쉬트리를 이용한 효율적인 연관규칙 탐사 알고리즘)

  • Lee, Jae-Mun;Park, Jong-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.3
    • /
    • pp.343-352
    • /
    • 1999
  • 본 논문에서는 대용량 데이터베이스에서 효율적인 연관 규칙 탐사에 대한 알고리즘을 제안하였다. 제안하는 알고리즘은 복합 해쉬 트리를 사용하여 해쉬 트리 탐색 비용과 데이터베이스 스캔 비용을 동시에 줄임으로서 성능을 향상시켰다. 복합 해쉬 트리는 같은 크기의 항목집합들 대신에 크기가 다른 여러 항목집합을 하나의 해쉬 트리로 구성한다. 복합 해쉬 트리의 유용성을 보이기 위하여 제안한 알고리즘은 잘 알려져 있는 Apriori, DHP 방밥과 수행 시간 측면에서 성능 비교를 하였다. 그 결과 대부분의 최소 지지도에서제안한 알고리즘이 Apriori, DHP 방법보다 우수하게 나타났으며, 최소 지지도가 0.5% 이하인 경우 DHP 방법에 비하여 약 30%의 이득 향상이 있었다.

Product-group Recommendation based on Association Rule Mining and Collaborative Filtering in Ubiquitous Computing Environment (유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천)

  • Kim, Jae-Kyeong;Oh, Hee-Young;Kwon, Oh-Byung
    • Journal of Information Technology Services
    • /
    • v.6 no.2
    • /
    • pp.113-123
    • /
    • 2007
  • In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.

An Incremental Updating Algorithm of Sequential Patterns (점진적인 순차 패턴 갱신 알고리즘)

  • Kim Hak-Ja;Whang Whan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.17-28
    • /
    • 2006
  • In this paper, we investigate a problem of updating sequential patterns when new transactions are added to a database. We present an efficient updating algorithm for sequential pattern mining that incrementally updates added transactions by reusing frequent patterns found previously. Our performance study shows that this method outperforms both AprioriAll and PrefixSpan algorithm which updates from scratch, since our method can efficiently utilize reduced candidate sets which result from the incremental updating technique.

Association Rule by Considering Users Web Site Visiting Time (사용자 웹 사이트 방문 시간을 고려한 연관 규칙)

  • Kang, Hyung-Chang;Kim, Chul-Soo;Lee, Dong-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.104-109
    • /
    • 2006
  • We can offer suitable information to users analyzing the pattern of users. An association rule is one of data mining techniques which can discover the pattern. We use an association rule which considers the web page visiting time and we should the pattern analyse of users. The offered method puts the weights in Web page visiting time of the user and produces an association rule. Weight is web page visiting time unit divide to total of web page visiting time. We offer rather meaningful result the association rule by Apriori algorithm. This method that proposes in the paper offers rather meaningful result Apriori algorithm

Big Data Analysis in School Adjustment Factors using Data Mining

  • Ko, Sujeong
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Data mining technology is applied to various fields because it is a technique for analyzing vast amount of data and finding useful information. In this paper, we propose a big data analysis method that uses Apriori algorithm, which is a data mining technique, to find the related factors that have negative and positive influences on school adjustment. Among Korea Child and Youth Panel Survey(KCYPS), data related to adjustment to school life and data showing parental inclinations were extracted from the data of fourth grade elementary school students, first year middle school students, and high school freshman students, respectively and we have mapped the useful association rules among them. As a result, the factors affecting school adjustment were different according to the timing of the growth process, we were able to find interesting rules by looking for connections between rules. On the other hand, the factors that positively influenced school adjustment were not significantly different from each other, and overall, they were associated with positive variables.

A Partition Mining Method of Sequential Patterns using Suffix Checking (서픽스 검사를 이용한 단계적 순차패턴 분할 탐사 방법)

  • 허용도;조동영;박두순
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.590-598
    • /
    • 2002
  • For efficient sequential pattern mining, we need to reduce the cost to generate candidate patterns and searching space for the generated ones. Although Apriori-like methods like GSP[8] are simple, they have some problems such as generating of many candidate patterns and repetitive searching of a large database. PrefixSpan[2], which was proposed as an alternative of GSP, constructs the prefix projected databases which are stepwise partitioned in the mining process. It can reduce the searching space to estimate the support of candidate patterns, but the construction cost of projected databases is still high. To solve these problems, we proposed SuffixSpan(Suffix checked Sequential Pattern mining) as a new sequential pattern mining method. It generates a small size of candidate pattern sets using partition property and suffix property at a low cost and also uses 1-prefix projected databases as the searching space in order to reduce the cost of estimating the support of candidate patterns.

  • PDF

A Store Recommendation Procedure in Ubiquitous Market (U-마켓에서의 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Kim, Min-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.45-63
    • /
    • 2007
  • Recently as ubiquitous environment comes to the fore, information density is raised and enterprise is being able to capture and utilize customer-related information at the same time when the customer purchases a product. In this environment, a need for the recommender systems which can deliver proper information to the customer at the right time and right situation is highly increased. Therefore, the research on recommender systems continued actively in a variety of fields. Until now, most of recommender systems deal with item recommendation. However, in the market in ubiquitous environment where the same item can be purchased at several stores, it is highly desirable to recommend store to the customer based on his/her contextual situation and preference such as store location, store atmosphere, product quality and price, etc. In this line of research, we proposed the store recommender system using customer's contextual situation and preference in the market in ubiquitous environment. This system is based on collaborative filtering and Apriori algorithms. It will be able to provide customer-centric service to the customer, enhance shopping experiences and contribute in revitalizing market in the long term.

  • PDF

SME Bakery's Marketing Strategies Based on Apriori Algorithm (Apriori 알고리즘 기반의 중소 베이커리 기업의 대응 전략)

  • Kim, Do Hoon;Lee, Hyeon June;Lee, Bong Gyou
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.328-337
    • /
    • 2022
  • The importance of online marketing is emerging due to the prevalence of COVID-19. In order to respond to the changing business environment, we have collected ten years of sales data of SME bakery company that have experienced a decrease in sales due to the COVID-19. As a result of the analysis, we found that switching from offline markets to omnichannel B2B and B2C markets and taking 'small quantity batch production' to 'mass production in a small variety can improve management. This study presented online and offline marketing strategies through data analysis of small and medium-sized bakery companies, which have relatively insufficient digital capabilities compared to large companies, and could be a guideline for many SMEs.

Frequently Occurred Information Extraction from a Collection of Labeled Trees (라벨 트리 데이터의 빈번하게 발생하는 정보 추출)

  • Paik, Ju-Ryon;Nam, Jung-Hyun;Ahn, Sung-Joon;Kim, Ung-Mo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.65-78
    • /
    • 2009
  • The most commonly adopted approach to find valuable information from tree data is to extract frequently occurring subtree patterns from them. Because mining frequent tree patterns has a wide range of applications such as xml mining, web usage mining, bioinformatics, and network multicast routing, many algorithms have been recently proposed to find the patterns. However, existing tree mining algorithms suffer from several serious pitfalls in finding frequent tree patterns from massive tree datasets. Some of the major problems are due to (1) modeling data as hierarchical tree structure, (2) the computationally high cost of the candidate maintenance, (3) the repetitious input dataset scans, and (4) the high memory dependency. These problems stem from that most of these algorithms are based on the well-known apriori algorithm and have used anti-monotone property for candidate generation and frequency counting in their algorithms. To solve the problems, we base a pattern-growth approach rather than the apriori approach, and choose to extract maximal frequent subtree patterns instead of frequent subtree patterns. The proposed method not only gets rid of the process for infrequent subtrees pruning, but also totally eliminates the problem of generating candidate subtrees. Hence, it significantly improves the whole mining process.

  • PDF

Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences (생물학적 데이터 서열들에서 빈번한 최대길이 연속 서열 마이닝)

  • Kang, Tae-Ho;Yoo, Jae-Soo
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Biological sequences such as DNA sequences and amino acid sequences typically contain a large number of items. They have contiguous sequences that ordinarily consist of hundreds of frequent items. In biological sequences analysis(BSA), a frequent contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological dataset with long frequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous sequences in large biological data sequences by constructing the spanning tree with the fixed length. To verify the superiority of the proposed method, we perform experiments in various environments. As the result, the experiments show that the proposed method is much more efficient than MacosVSpan in terms of retrieval performance.