• 제목/요약/키워드: approximate frequent pattern mining

검색결과 4건 처리시간 0.019초

확률 기법에 기반한 근접 빈발 패턴 마이닝 기법의 성능평가 (Performance evaluation of approximate frequent pattern mining based on probabilistic technique)

  • 편광범;윤은일
    • 인터넷정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.63-69
    • /
    • 2013
  • 근접 빈발 패턴 마이닝은 향상된 효율성을 위해 정확한 패턴보다 허용되는 범위 안에서 근접 빈발 패턴을 마이닝한다. 데이터베이스의 크기가 증대함에 따라 거대한 데이터베이스를 처리하기 위해서 더 빠른 마이닝 기법이 필요하게 되고 있다. 또한, 노이지나 데이터의 다양성 때문에 패턴을 마이닝 하는 것에 대한 정확한 결과를 찾기가 더 어렵다. 이러한 경우들에 대해, 근접 빈발 패턴 마이닝을 함으로 실행시간, 메모리 사용량, 그리고 확장성의 관점에서 더 효율적인 마이닝을 수행할 수 있다. 이 논문에서는 확률 기법에 근간한 근접 패턴 마이닝 알고리즘에 대한 특성을 살펴보고 척도가 되는 확률 기법에 기반한 근접 패턴 마이닝 알고리즘에 대해 성능 평가를 한다. 최종적으로 성능의 향상을 위해 테스트 결과를 분석한다.

다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석 (Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports)

  • 양흥모;윤은일
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.1-8
    • /
    • 2013
  • 거대한 데이터베이스로부터 중요하고 의미 있는 정보를 찾아내기 위해 데이터 마이닝 기법들이 사용되며, 패턴 마이닝은 이러한 데이터 마이닝을 위한 중요한 기법 중에 하나이다. 패턴 마이닝은 거대 데이터베이스로부터 유용한 패턴을 찾아내는 기법이며, 패턴 마이닝 분야 중에 하나인 빈발 패턴 마이닝은 데이터베이스에서 최소 임계치 이상의 빈도수를 가지는 빈발 패턴을 마이닝 한다. 전통적인 빈발 패턴 마이닝은 전체 데이터베이스에 대한 단일 최소 임계치를 기반으로 중요 빈발 패턴을 마이닝 한다. 단일 최소 임계치 모델은 데이터베이스 내 모든 아이템이 동일한 특성을 가진다고 암묵적으로 가정한다. 그러나 실제 응용에서는 각 아이템들이 개별적인 특성을 가지고 있을 수 있으며, 따라서 이를 반영한 패턴 마이닝 기법이 요구된다. 데이터베이스 내 아이템들의 이러한 특성이 반영되지 않은 빈발 패턴 마이닝 모델에서, 중요한 희귀 아이템이 포함된 패턴을 마이닝 하기 위해서는 낮은 최소 임계치를 설정해야 한다. 그러나 너무 낮은 최소 임계치는 의미 없는 아이템들을 포함하는 수많은 패턴을 야기한다. 반대로 높은 최소 임계치는 희귀 아이템이 포함된 패턴을 마이닝 하지 못하는 희귀 아이템 문제라 불리는 딜레마가 발생한다. 이러한 문제의 해결을 위한 초기 연구들은 아이템 빈도수에 따라 데이터를 몇 개의 블록으로 분할하거나 관련 희귀 아이템들을 하나의 그룹으로 만드는 방법을 사용한 근사적 접근법을 제안하였다. 그러나 이러한 기법들은 근사적 방법의 적용에 의해 모든 희귀 패턴을 포함한 빈발 패턴을 마이닝 하지 못한다. 다중 최소 임계치를 고려한 패턴 마이닝 모델은 아이템들의 개별적인 특성을 반영하여 희귀 아이템 문제를 해결하기 위해 제안되었다. 다중 최소 임계치 기반의 빈발 패턴 마이닝 모델에서 각 아이템은 MIS (Minimum Item Support)라고 불리는 개별 최소 임계치를 가지며, 아이템들의 데이터베이스 내 빈도수를 기반으로 계산된다. 다중 최소 임계치 모델은 MIS를 통해 수많은 의미 없는 패턴을 생성하지 않고도 손실 없이 모든 희귀 빈발 패턴을 찾아낸다. 한편, 빈발 패턴을 마이닝 하는 과정에서 후보 패턴들이 생성되며, 단일 최소 임계치 모델에서는 각 후보 패턴의 빈도수가 유일한 최소 임계치와 비교된다. 따라서, 희귀 아이템 문제가 발생할 뿐만 아니라 후보 패턴을 구성하는 아이템들의 특성이 고려되지 않는다. 다중 최소 임계치 모델에서는 이 문제를 다루기 위해 후보 패턴을 구성하는 아이템들의 MIS 값 중에서 가장 작은 MIS 값을 해당 후보 패턴의 최소 임계치로 설정하여 패턴 내 아이템들의 특성을 반영한다. 이를 적용하여 효율적으로 희귀 빈발 패턴을 마이닝 하기 위해 트리 구조 기반의 알고리즘은 빈도수 내림차순으로 트리 내 아이템들을 정렬하는 단일 최소 임계치 모델과는 달리 MIS 내림차순으로 아이템들을 정렬하여 마이닝을 수행한다. 본 논문에서는 다중 최소 임계치 기반의 빈발 패턴 마이닝 알고리즘에 대한 특성을 살펴보고, 일반 단일 임계치 기반 알고리즘과의 성능평가를 수행한다. 성능평가는 실행 속도, 메모리 사용량, 그리고 확장성의 관점에서 수행된다. 성능평가 결과, 다중 최소 임계치 기반의 빈발 패턴 마이닝 알고리즘은 희귀 빈발 패턴을 포함한 모든 빈발 패턴을 단일 임계치 기반의 빈발 패턴 마이닝 알고리즘보다 더 빠른 속도로 마이닝 하였으며, 각 아이템의 최소 임계치 정보를 위한 추가적인 메모리를 필요로 하였다. 또한, 비교 알고리즘들은 좋은 확장성 결과를 보였다.

근사 알고리즘을 이용한 순차패턴 탐색 (Searching Sequential Patterns by Approximation Algorithm)

  • 산사볼트가람라흐차;황영섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.29-36
    • /
    • 2009
  • 서열데이터베이스에 있는 자주 발현하는 부분 서열을 패턴으로 찾아내는 순차패턴 탐색은 넓은 응용 분야를 가지는 중요한 데이터 마이닝 문제이다. DNA 서열에서 순차패턴이 모티프가 될 수 있으므로 DNA 서열에서 순차패턴을 찾는 것을 연구하였다. 대부분의 기존 마이닝 방법은 순차패턴의 정의에 따라 정확한 정합에 주력하여 노이즈가 있는 환경이나 실제 문제에서 발생하는 부정확한 데이터에 대하여 제대로 작동하지 않을 수 있다. 이러한 문제가 생물 데이터인 DNA 서열에서 자주 나타난다. 이러한 문제를 다루기 위한 근사 정합 방법을 연구하였다. 본 연구의 아이디어는 자주 발생하는 패턴을 근사 패턴이라 부르는 그룹으로 분류할 수 있다는 관찰에서 기반을 둔다. 기존의 Prefixspan 알고리즘은 주어진 긴 서열에서 순차패턴을 잘 찾을 수 있다. 본 연구는 Prefixspan 알고리즘을 개선하여 유사한 순차패턴을 찾을 수 있게 하였다. 실험 결과는 PreFixSpan보다 제안한 방법이 패턴 길이가 4일 때, 근사 순차패턴의 빈도가 5배 높아짐을 보였다.

비즈니스 서비스 식별을 위한 변형 순차패턴 마이닝 알고리즘 (Adapted Sequential Pattern Mining Algorithms for Business Service Identification)

  • 이정원
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.87-99
    • /
    • 2009
  • SOA를 도입하는 하향식 (top-down) 방법은 온톨로지를 기반으로 서비스를 분석하고 설계하는 서비스 모델링 단계를 핵심으로 봄으로써 SOA의 장점을 가장 잘 반영할 수 있는 방법으로 권장되고 있다. 그러나 대부분의 기업들은 하향식 방법이 최상이라는 것을 알면서도 기업 이윤 창출에 단기적인 효과가 드러나지 않고 도입 초기에 개발시간과 비용이 증대되므로 이를 꺼리게 된다. 특히 잘 정의된 컴포넌트 시스템을 이미 사용하고 있는 경우에 더욱 그러하다. 따라서 본 논문에서는 기존의 잘 정의된 컴포넌트시스템을 최대한 이용할 수 있는 상향식 (bottom-up) 서비스식별 방법을 제안한다. GUI는 직접 사용자의 입력을 받아 들여 이벤트를 발생시킨다는 점에 착안하여 이벤트의 경로를 연결하면 비즈니스 프로세스에 근사시킬 수 있다. 따라서 컴포넌트와 상호작용하는 GUI의 이벤트 수를 기준으로 핵심 GUI를 선정하고 핵심 GUI로부터 연결되는 이벤트 경로를 대상으로 기존의 순차패턴 마이닝 알고리즘을 변형하여 사용자의 서비스 사용 패턴을 추출한다. 실험결과 추출된 이벤트 패턴에 응집도를 적용하여 다양한 크기의 비즈니스 서비스를 식별할 수 있음을 보였다.