• Title/Summary/Keyword: approximate frequent pattern mining

Search Result 4, Processing Time 0.015 seconds

Performance evaluation of approximate frequent pattern mining based on probabilistic technique (확률 기법에 기반한 근접 빈발 패턴 마이닝 기법의 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Approximate Frequent pattern mining is to find approximate patterns, not exact frequent patterns with tolerable variations for more efficiency. As the size of database increases, much faster mining techniques are needed to deal with huge databases. Moreover, it is more difficult to discover exact results of mining patterns due to inherent noise or data diversity. In these cases, by mining approximate frequent patterns, more efficient mining can be performed in terms of runtime, memory usage and scalability. In this paper, we study the characteristics of an approximate mining algorithm based on probabilistic technique and run performance evaluation of the efficient approximate frequent pattern mining algorithm. Finally, we analyze the test results for more improvement.

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

Searching Sequential Patterns by Approximation Algorithm (근사 알고리즘을 이용한 순차패턴 탐색)

  • Sarlsarbold, Garawagchaa;Hwang, Young-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.29-36
    • /
    • 2009
  • Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence database, is an important data mining problem with broad applications. Since a sequential pattern in DNA sequences can be a motif, we studied to find sequential patterns in DNA sequences. Most previously proposed mining algorithms follow the exact matching with a sequential pattern definition. They are not able to work in noisy environments and inaccurate data in practice. Theses problems occurs frequently in DNA sequences which is a biological data. We investigated approximate matching method to deal with those cases. Our idea is based on the observation that all occurrences of a frequent pattern can be classified into groups, which we call approximated pattern. The existing PrefixSpan algorithm can successfully find sequential patterns in a long sequence. We improved the PrefixSpan algorithm to find approximate sequential patterns. The experimental results showed that the number of repeats from the proposed method was 5 times more than that of PrefixSpan when the pattern length is 4.

Adapted Sequential Pattern Mining Algorithms for Business Service Identification (비즈니스 서비스 식별을 위한 변형 순차패턴 마이닝 알고리즘)

  • Lee, Jung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.87-99
    • /
    • 2009
  • The top-down method for SOA delivery is recommended as a best way to take advantage of SOA. The core step of SOA delivery is the step of service modeling including service analysis and design based on ontology. Most enterprises know that the top-down approach is the best but they are hesitant to employ it because it requires them to invest a great deal of time and money without it showing any immediate results, particularly because they use well-defined component based systems. In this paper, we propose a service identification method to use a well-defined components maximally as a bottom-up approach. We assume that user's inputs generates events on a GUI and the approximate business process can be obtained from concatenating the event paths. We first find the core GUIs which have many outgoing event calls and form event paths by concatenating the event calls between the GUIs. Next, we adapt sequential pattern mining algorithms to find the maximal frequent event paths. As an experiment, we obtained business services with various granularity by applying a cohesion metric to extracted frequent event paths.