• Title/Summary/Keyword: approximate frequency

Search Result 286, Processing Time 0.028 seconds

Blind symbol timing offset estimation for offset-QPSK modulated signals

  • Kumar, Sushant;Majhi, Sudhan
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.324-332
    • /
    • 2020
  • In this paper, a blind symbol timing offset (STO) estimation method is proposed for offset quadrature phase-shift keying (OQPSK) modulated signals, which also works for other linearly modulated signals (LMS) such as binary-PSK, QPSK, 𝜋/4-QPSK, and minimum-shift keying. There are various methods available for blind STO estimation of LMS; however, none work in the case of OQPSK modulated signals. The popular cyclic correlation method fails to estimate STO for OQPSK signals, as the offset present between the in-phase (I) and quadrature (Q) components causes the cyclic peak to disappear at the symbol rate frequency. In the proposed method, a set of close and approximate offsets is used to compensate the offset between the I and Q components of the received OQPSK signal. The STO in the time domain is represented as a phase in the cyclic frequency domain. The STO is therefore calculated by obtaining the phase of the cyclic peak at the symbol rate frequency. The method is validated through extensive theoretical study, simulation, and testbed implementation. The proposed estimation method exhibits robust performance in the presence of unknown carrier phase offset and frequency offset.

Circardian rhythm of cardiac nonlinear dynamics in healthy human

  • Yum, M.K.;Kim, N.S.;Oh, J.W.;Kim, C.R.;Lee, J.H.;Kim, S.K.;Lee, J.M.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.323-326
    • /
    • 1997
  • In this study, we investigated the circardian rhythm of complexity of cardiac dynamics in humans. Dynamic 24-hour electrocardiographic recordings were obtained from 30 healthy ambulant subjects aged 41 to 50 years. or each recordings, normalized low frequency (0.04-0.1 hertz) and high frequency (>0.15 hertz) component are calculated. our different indexes obtained from separate algorithms of nonlinear dynamics - approximate entropy, correlation dimension, Lyapunov exponent and fractal dimension - were calculated. During early morning, low frequency component rose rapidly with concomitant withdrawl of high frequency component. All the our indexes of nonlinear dynamics showed remarkably same circardian rhythm: an early morning dip preceded by a steep decline during late night, a gradual recovery during evening and a peak around midnight. These data indicate that the simultansous losses of all of the our different mechanisms of nonlinear control of heart rate during early morning, concomitent with the surge of symapathetic activity and reduction of vagal activity, may contribute to the increased incidence of cardiovascular events during morning hours.

  • PDF

Simultaneous Multiple Transmit Focusing Using Orthogonal Weighted Linear FM Chirp (가중된 직교 선형 FM신호를 이용한 송신 동시 다중 빔집속 기반의 초음파 영상 기법)

  • 정영관;송태경
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.155-158
    • /
    • 2001
  • A new method for simultaneous multiple transmit focusing using orthogonal weighted FM chirp is proposed. Weighted chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in the approximate sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels, and the crosscorrellation function of any pair of the signals has smaller values than the sidelobe levels of each autocorrelation function. This means that each weighted chirp signal can be separately compressed into a short pulse, focused individually and combined with other focused beams to form a frame of image. Theoretically, any two chirp signals defined in two nonoverlapped frequency bands are mutually orthogonal. In the present work, however, a fractional overlap of adjacent frequency bands, by up to 25%, were permitted to design more chirp signals within a given transducer bandwidth. The crosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals. The simulation results show that this method can improve the lateral resolution of image without sacrifice in the frame rate compared with the conventional pulse system.

  • PDF

Experimental Installation of Pressure Oscillation based on Pulse-driving Technique

  • YANG, Tian-hao;LIU, Pei-jin;JIN, Bing-ning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.58-61
    • /
    • 2015
  • Under the background of combustion instability in solid rocket motor, to study the relationship between pressure oscillations and dynamic process of propellant flames, it is necessary to simulate an oscillation environment with certain frequency, amplitude and duration. This paper presents an experimental installation of pressure oscillation based on pulse-driving technique, with which pressure oscillations features under different pulse-driving conditions were compared and analyzed. For the pulse-driver applied in this paper, a pressure oscillation with 0.15s-0.5s duration, 179Hz-210Hz first order frequency, 0.04MPa-0.35MPa amplitude is simulated. The test results show that an oscillation with higher frequency and lager amplitude can be obtained when pulse-driver is installed on the top of the installation cavity, while on the side, an oscillation with a longer duration and approximate cavity natural frequency can be simulated.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

Vibration Characteristics of the Fruit and Vegetables during Transportation (II) -Vibration Characteristics of the Fruit and Vegetables using FEM- (유통중 청과물의 진동 특성 연구 (II) -유한요소법을 이용한 청과물의 진동특성-)

  • Kim, Man-Soo;Jung, Hyun-Mo;Kim, Ghi-Seok;Park, Chung-Gil
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.2
    • /
    • pp.184-190
    • /
    • 2003
  • Finite element method(FEM) was used to obtain an approximate solution, since the mathematical formulations for the problem are complex and cannot be solved analytically. In this study, the fruit as well as the aluminum support on vibrator are discretized into small elements, and the approximate functions are used to describe the displacements in each element in terms of nodal values, and because of the complexity of the problem of viscoelastic materials such as the fruit and vegetables, it was necessary to validate the modeling approach before pear simulations were performed, and the finite element modeling approach was first validated by comparing the results obtained from simulation and experiment for the pear in the frequency range 3 to 150 Hz and acceleration level of 0.25 G-rms. Based on the relatively good agreement between simulated and measured frequencies for the pear, finite element models of tomato and oriental melon were created to study the vibration characteristics of the fruit and vegetables. The resonance frequencies of the pear, tomato and oriental melon using FEM were 62.50, 39.45 and 62.73 Hz and the peak accelerations of them using FEM were 2.21, 1.38 and 1.98 G-rms.

  • PDF

Shape Optimization of an Air Conditioner Piping System (에어컨 배관 시스템의 형상 최적설계)

  • Min, Jun-Hong;Choi, Dong-Hoon;Jung, Du-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1151-1157
    • /
    • 2009
  • Ensuring both product quality and reducing material cost are important issue for the design of the piping system of an air conditioner outdoor unit. This paper describes a shape optimization that achieves mass reduction of an air conditioner piping system while satisfying two design constraints on resonance avoidance and the maximum stress in the pipes. In order to obtain optimized design results with various analysis fields considered simultaneously, an automated multidisciplinary analysis system was constructed using PIAnO v.2.4, a commercial process integration and design optimization(PIDO) tool. As the first step of the automated analysis system, a finite element model is automatically generated corresponding to the specified shape of the pipes using a morphing technique included in HyperMesh. Then, the performance indices representing various design requirements (e.g. natural frequency, maximum stress and pipe mass) are obtained from the finite element analyses using appropriate computer-aided engineering(CAE) tools. A sequential approximate optimization(SAO) method was employed to effectively obtain the optimum design. As a result, the pipe mass was reduced by 18 % compared with that of an initial design while all the constraints were satisfied.

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.