• 제목/요약/키워드: approach viaducts

검색결과 2건 처리시간 0.021초

Earthquake performance of the two approach viaducts of the bosphorus suspension bridge

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Celep, Zekai
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.387-406
    • /
    • 2016
  • The main purpose of this paper is to determine the dynamic characteristics and the structural stability of the two approach viaducts of the Bosphorus Suspension Bridge under the expected stresses that would be caused during earthquake conditions. The Ortakoy and the Beylerbeyi approach viaducts constitute the side spans of the bridge at two locations. The bridge's main span over the Bosphorus is suspended, whereas they are supported at the base at either end. For the numerical investigation of the viaducts, 3-D computational structural finite element-FE models were developed. Their natural frequencies and the corresponding mode shapes were obtained, analyzed, presented and compared. The performances of the viaducts, under earthquake conditions, were studied considering the P-Delta effects implementing the push-over (POA) and the non-linear time-history analyses (NTHA). For the NTHA, three earthquake ground motions were generated depending on the location of the bridge. Seismic performances of the viaducts were determined in accordance with the requirements of the Turkish Seismic Code for the Earthquake Design of Railways Bridges (TSC-R/2008) and those of Caltrans (CALTRANS-2001) given for Seismic Design of Steel Bridges, separately. Furthermore, the investigation was extended for evaluating the possible need for retrofitting in the future. After the analysis of the resultant data, a retrofit recommendation for the viaducts was presented.

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.