• 제목/요약/키워드: appressorium

검색결과 72건 처리시간 0.018초

Bio-Sulfur Pre-Treatment Suppresses Anthracnose on Cucumber Leaves Inoculated with Colletotrichum orbiculare

  • Ko, Eun Ju;Shin, Yong Ho;Hyun, He Nam;Song, Hyo Soon;Hong, Jeum Kyu;Jeun, Yong Chull
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.308-318
    • /
    • 2019
  • Bio-sulfur can be produced in the process of desulfurization from a landfill and collected by some microorganism such as Thiobacillus sp. as a sulfur element. In order to investigate practical use of bio-sulfur as an agent for controlling plant disease, in vitro antifungal activity of bio-sulfur was tested against Colletotrichum orbiculare known to cause cucumber anthracnose. Efficacy of bio-sulfur for suppressing anthracnose disease was also evaluated in vivo using cucumber leaves. Mycelial growth of C. orbiculare on medium containing bio-sulfur was inhibited. Disease severity of cucumber leaves pre-treated with bio-sulfur was significantly decreased compared to that of untreated ones. To illustrate how bio-sulfur could suppress anthracnose disease, structures of cucumber leaves infected with C. orbiculare were observed under a fluorescent microscope and a scanning electron microscope (SEM). Cucumber leaves pre-treated with bio-sulfur showed a low rate of appressorium formation whereas untreated ones showed abundant appressoria. Shrunk fungal hyphae were mostly observed on bio-sulfur-pretreated leaves by SEM. Similar results were observed on leaves pre-treated with a commercial fungicide Benomyl(R). These results suggest that inhibition of appressorium formation of C. orbiculare by bio-sulfur may contribute to its suppression of cucumber anthracnose.

The Small GTPase CsRAC1 Is Important for Fungal Development and Pepper Anthracnose in Colletotrichum scovillei

  • Lee, Noh-Hyun;Fu, Teng;Shin, Jong-Hwan;Song, Yong-Won;Jang, Dong-Cheol;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.607-618
    • /
    • 2021
  • The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GT-Pase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (𝜟Csrac1) via homologous recombination to investigate the functional roles of CsRAC1. The 𝜟Csrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although 𝜟Csrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, 𝜟Csrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that 𝜟Csrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovilleipepper fruit pathosystem.

The CsSTE50 Adaptor Protein in Mitogen-Activated Protein Kinase Cascades Is Essential for Pepper Anthracnose Disease of Colletotrichum scovillei

  • Jong-Hwan, Shin;Byung-Seong, Park;Kyoung Su, Kim
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.593-602
    • /
    • 2022
  • Anthracnose, caused by the ascomycete fungus Colletotrichum scovillei, is a destructive disease in pepper. The fungus germinates and develops an infection structure called an appressorium on the plant surface. Several signaling cascades, including cAMP-mediated signaling and mitogen-activated protein kinase (MAPK) cascades, are involved in fungal development and pathogenicity in plant pathogenic fungi, but this has not been well studied in the fruit-infecting fungus C. scovillei. Ste50 is an adaptor protein interacting with multiple upstream components to activate the MAPK cascades. Here, we characterized the CsSTE50 gene of C. scovillei, a homolog of Magnaporthe oryzae MST50 that functions in MAPK cascades, by gene knockout. The knockout mutant ΔCsste50 had pleiotropic phenotypes in development and pathogenicity. Compared with the wild-type, the mutants grew faster and produced more conidia on regular agar but were more sensitive to osmotic stress. On artificial and plant surfaces, the conidia of the mutant showed significantly reduced germination and failed to form appressoria. The mutant was completely non-pathogenic on pepper fruits with or without wounds, indicating that pre-penetration and invasive growth were both defective in the mutant. Our results show that the adaptor protein CsSTE50 plays a role in vegetative growth, conidiation, germination, appressorium formation, and pathogenicity in C. scovillei.

A Rice Blast Fungus Alpha-N-Arabinofuranosidase B Elicits Host Defense in Rice

  • Kim, Sun-Tae
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.23-23
    • /
    • 2015
  • Rice blast disease caused by M. oryzae is the most devastating fungal disease in rice. During the infection process, M. oryzae secretes a large number of glycosyl hydrolase (GH) proteins into the apoplast to digest host cell wall and assist fungal ingress into host tissues. In this study, we identified a novel M. oryze arabinofuranosidase B (MoAbfB) which is secreted during fungal infection. Live-cell imaging exhibited that fluorescent labeled MoAbfB was highly accumulated in fungal invasive structures such as appressorium, tips of penetration peg, biotrophic interfacial complex (BIC), as well as invasive hyphal tip. Deletion of MoAbfB mutants extended biotrophic phase followed by enhanced disease severity, whereas, over-expression of OsMoAbfB mutant induced rapid defense responses and enhanced rice resistance to M. oryzae infection. Furthermore, exogenous treatment of MoAbfB protein showed inhibition of fungal infection via priming of defense gene expression. We later found that the extract of MoAbfB degraded rice cell wall fragments could also induce host defense activation, suggesting that not MoAbfB itself but oligosaccharides (OGs) derived from MoAbfB dissolved rice cell wall elicited rice innate immunity.

  • PDF

콩 탄저병균의 생장 및 병 진전에 미치는 온도, 수분 존재시간, 살균제의 영향 (Influence of Temperature, Wetness Duration and Fungicides on Fungal Growth and Disease Progress of Soybean Anthracnose Caused by Colletotrichum spp.)

  • 오정행;김규홍
    • 식물병연구
    • /
    • 제9권3호
    • /
    • pp.131-136
    • /
    • 2003
  • 콩 탄저병의 효과적인 관리를 위하여 병원균의 병원성을 비교하고, 포자발아, 부착기 형성, 균사생장 및 병 진전에 미치는 온도와 수분존재시간의 영향, 그리고 살균제에 대한 반응을 조사하였다. C. gloeosporioides의 종자병원성은 C.truncatum과 비슷하게 높았으나 경엽에서의 병원성은 현저히 낮았다. C. gloeosporioides의 포자발아, 부착기 형성, 균사생장 적온은 $25^{\circ}C$였고, C. truncatum의 적온은 $30^{\circ}C$였으며, $15^{\circ}C$에서는 매우 낮았다. 살균제에 대한 반응은 C. truncatum은 fluazinam과 benomyl에 대해, C. gloeosporioides는 fluazinam과 triflumizole에 대해 높은 감수성을 보였다. C. truncatum에 의한 병의 진전율은 수분존재시간이 8시간이면 $30^{\circ}C$에서, 32시간 이상이면 $25^{\circ}C$에서 가장 높았으며, $20^{\circ}C$에서는 매우 낮았다. 살균제에 대한 감수성은 병원균에 따라 차이가 있으므로 Colletotrichum spp. 의 중복감염에 의한 콩 탄저병의 방제를 위해서는 살균제의 정확한 선택이 중요할 것으로 보인다.

도열병균의 핵학적 연구 (Studies on the nuclear cytology of Pyricularia oryzae CAV)

  • 이시용;심재섭;이은종
    • 한국응용곤충학회지
    • /
    • 제5_6권
    • /
    • pp.19-26
    • /
    • 1968
  • 휴지상태에 있는 성숙한 도열병균 포자 1,000개를 관찰한 결과 각 세포에 단핵을 가지는 포자비율이 $95\%$로 단연 많았고 또 미숙회자인 1세포 1핵 포자로부터 출발하여 3세포 3핵인 성숙포자가 형성됨을 관찰할 수 있었다. 분열 중인 핵은 배열된 염색체로서 관찰할 수 있었으며, 염색체수는 n=3,4,5,6개로 나타났으나, n=5개가 가장 많았다. 핵이 발아관으로 이동하는 방법은 첫째로 휴지상태에 있던 핵이 분열하여 2핵이 되고 그 중 1핵이 발아관에 이동하고 1핵은 세포내에 머무는 것과$(43\%)$, 둘째 방법은 핵분열 없이 직접 세포내의 1핵이 발아관을 따라 이동하는 것들이 $(57\%)$ 있다. 또 부착기내의 핵을 염색하여 관찰한 결과 무핵의 부착기가 상당히 많았으나 핵질을 가진 500개의 부착기 중에 단핵이 476개로서 $95.2\%$였다(Chromosome 으로 관찰된 4부착기는 제외). 이상의 결과로서 도열병균은 전생활환을 통하여 단핵을 함유한다는 것을 인정할 수 있으며, 도열병균포자가 다세포일지라도 Homokaryon이라고 생각되므로 단포자분리균을 도열병에 관한 모든 시험에 공시하는 것은 합당하다고 할 수 있다.

  • PDF

Effects of Atmospheric Ozone on the Rice Blast Pathogen Pyricularia grisea

  • Hur, Jae-Seoun;Kim, Ki-Woo;Kim, Pan-Gi;Yun, Sung-Chul;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • 제16권1호
    • /
    • pp.19-24
    • /
    • 2000
  • The direct effects of acute $\textrm{O}_3$ on the growth, sporulation and infection of Pyricularia grisea, rece blast pathogen, were investigated to understand the interactions between ozone and the pathogen. Acute exposure of 200 nl $\textrm{l}^{-1}$ ozone for 8 h significantly reduced conidia germination on water atar. Ozone exposure of 200 nl $\textrm{l}^{-1}$ for 8h per day for 5 days had no effect on increase in colony diameter, but severely damaged actively growing aerial mycelia. However, the damage to mycalia was recovered during the following 16 h exposure of unpolluted air. Conidial production was also stimulated by the acute ozone exposure for 5 days. The conidia exposed to the acute ozone for 5 days normally germinates but slightly reduce appressoria formation on rice leaf. However, the conidia produced by artificial stimulation under the same ozone concentration for 10 days showed significant reduction in appressorea for mation on a hydrophobic film. This study suggests that the acute ozone could ingibit appressoria formation as well as vegetative growth of the pathogen, resulting in decrease in rece blast development in the field during summer when high ozone episodes could occur occasionally.

  • PDF

Expression Patterns of Transposable Elements in Magnaporthe oryzae under Diverse Developmental and Environmental Conditions

  • Chung, Hyunjung;Kang, Seogchan;Lee, Yong-Hwan;Park, Sook-Young
    • 식물병연구
    • /
    • 제26권1호
    • /
    • pp.38-43
    • /
    • 2020
  • The genome of the rice blast fungus Magnaporthe oryzae contains several types of transposable elements (TEs), and some TEs cause genetic variation that allows M. oryzae to evade host detection. We studied how five abundant TEs in rice pathogens, Pot3, Pot2, MAGGY, Line-like element (MGL) and Mg-SINE, are expressed under diverse conditions related to growth, development, and stress. Expression of Pot3 and Pot2 was activated in germinated conidia and mycelia treated with tricyclazole. Retrotransposon MAGGY was highly expressed in appressoria and tricyclazole-treated mycelia. MAGGY and Pot2 were also activated during the early and late stages of perithecia development. MGL was up-regulated in conidia and during conidial germination but not during appressorium formation. No noticeable expression of Mg-SINE was observed under most conditions. Our results should help investigate if and how condition-specific expressions of some TEs contribute to the biology and evolution of M. oryzae.

Antifungal Activity of Nor-securinine Against Some Phytopathogenic Fungi

  • Sahni, Sangita;Maurya, S.;Singh, U.P.;Singh, A.K.;Singh, V.P.;Pandey, V.B.
    • Mycobiology
    • /
    • 제33권2호
    • /
    • pp.97-103
    • /
    • 2005
  • Crude extracts and active principles from medicinal plants have shown potential role in controlling plant diseases in glasshouses as well as in fields as one of the safest and ecofriendly methods. The effect of nor-securinine (an alkaloid) isolated from Phyllanthus amarus has been seen against spore germination of some fungi (Alternaria brassicae, A. solani, Curvularia pennisetti, Curvularia sp., Erysiphe pisi, Helminthosporium frumentacei) as well as pea powdery mildew (Erysiphe pisi) under glasshouse conditions. The sensitivity of fungi to nor-securinine varied considerably. Nor-securinine was effective against most of the fungi. H. frumentacei was more sensitive even at the lowest concentration ($1,000\;{\mu}g/ml$). Likewise conidia of E. pisi were also inhibited in partially or completely appressorium formation. Pre-inoculation treatment showed greater efficacy than post-inoculation in inhibiting powdery mildew development on pea plants in a glasshouse. Maximum inhibition occurred at $2000\;{\mu}g/ml$.

아스파라거스에서 병원성 및 비병원성 Fusarium균의 상호작용과 비병원성 Fusarium을 이용한 아스파라거스 줄기 및 뿌리썩음병 방제 기작 연구 (Interactions of Virulent and Avirulent Fusarium species on Clonal Asparagus Plantlets and Mechanisms Involved in Protection of Asparagus with Avirulent Fusarium Species Against Stem and Crown Rots)

  • 이윤수
    • 한국식물병리학회지
    • /
    • 제12권1호
    • /
    • pp.47-57
    • /
    • 1996
  • 병원성 Fusarium에 의한 아스파라거스 감염은 비병원성 Fusarium을 5일과 7일 전에 접종하였을 때 방제효과가 있었다. 비병원성 F. oxysporum은 F. moniliforme에 대하여 방제효과가 있었고, F. solani는 F. oxysproum에 대하여 방제효과가 있음이 밝혀졌다. 실험에 사용된 Fusarium 균들은 모두 주근과 측근의 말단 부위, 상처부위, 그리고 표피의 세포벽 사이를 통하여 감염하였다. 경우에 따라 감염하는 동안 appressorium과 유사한 구조를 형성하기도 하였고, 직접 감염하는 경우도 있었다. 병원성 그리고 비병원성 Fusarium 균 모두 공통적으로 생장점 부위를 통하여 감염하였다. 병원성이 강한 Fusarium 균의 경우 비병원성 균들보다 감염의 속도가 빨랐고 더욱 생장이 왕성하였다. F. solani는 생장속도나 기주 조직 침입속도가 매우 느렸다. 기주 감염의 결과 처음에는 cortical rot을 유발시켰고 나중에는 tracheary elements를 감염하고 결국은 조직의 괴사를 유발하는 것이 관찰되었다. 비병원성 F. oxysporum은 표피조직에 두터운 균사층을 형성하였고, 이는 병원성 Fusarium 균에 대한 방제효과를 나타내는 원인을 제공한 것으로 여겨진다. F. solani는 측근의 생성을 촉진시켜 표면적을 증대시킨 것으로 여겨진다. 결론적으로 AVFO와 F. solani를 이용하여 아스파라거스에 발생하는 병원성 Fusarium균의 침입을 저지할 수 있는 생물적 방제가 가능함이 밝혀졌다.

  • PDF