• Title/Summary/Keyword: application of emulsifier

Search Result 26, Processing Time 0.023 seconds

The Principle of Emulsifier in Food Application and Trends in Food Emulsifier Market (유화제 식품적용 원리 및 식품 유화제 시장 동향)

  • Choi, Mi-Jung;Kim, Honggyun;Lee, YunJung;Park, Dong Hyeon;Lee, SangYoon
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.136-147
    • /
    • 2018
  • Emulsifiers are widely accepted ingredients in food & beverage applications owing to their functional properties. The multi-functionality of emulsifiers increases its adoption in end-use applications. Also, the growing demand of natural sources of ingredients and increase in demand for convenience foods and premium products have expanded the application areas of food emulsifiers in the food & beverage industries. Emulsifiers are increasingly used by food processors to make their food products more cost-efficient and robust, enabling them to endure the rigors of harsh processing.

Cooking Characteristics of Emulsifier-containing Oil -Degree of Oil Absorption and Spattering During Cooking, and Standard Recipe for Fried Foods- (일반 식용유와 기능성 식용유의 조리 특성 비교 -흡유율, 조리시 튀는 정도, 표준 조리법 작성을 중심으로-)

  • 문수재;오혜숙;이명희
    • Korean journal of food and cookery science
    • /
    • v.12 no.1
    • /
    • pp.99-107
    • /
    • 1996
  • The cooking characteristics of Hicook with lecithin and GMS as emulsifier were examined for effect on the reduction of oil levels in fried foods. Hicook and soybean oil were used in stir-frying and pan-frying, and in case of Hicook the weight of oil absorbed and spattered during cooking were significantly lower than in case of soybean oil. Next this study attempt to standardize the recipe for preparation of selected Korean foods, especially in regards of the amount of oil used during cooking. The foods studied were all used frequently in Korea, they inculded stir-fried vegetables, stir-fried rice, and pan-fried fish and soybean curd. The results showed that Hicook, even in a half amount, made it possible cooking food with good properties, and calorie content of cooked foods could be lowered considerably. The trained panelists evaluated sensory characteristics of foods, flavor, appearance, and overall acceptability. Sensory qualities of food prepared with Hicook were highly acceptable, and rated better than controls in flavor and overall acceptability. But because stir-fried food was accepted greasy and oily in customarily, the appearance was rated lower than comtrol. In summary, application of hicook offers means of lowering fat levels while keeping sensory quality good. The emulsifier in Hicook is responsible for reduction of oil content and improvement of quality of fried foods.

  • PDF

Emulsion Stability of Low Viscosity W/O Emulsion and Application of Inorganic Sunscreen Agents (저점도 W/O 에멀젼의 유화 안정성 증진 및 무기 자외선 차단제의 적용)

  • Yeon, Jae Young;Seo, Jeong Min;Kim, Tae Hoon;Shim, Jae Gon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.985-1001
    • /
    • 2018
  • In this study, we tried the various experiments using the emulsifier, electrolyte, stabilizer and gelling agent in order to improve a stability of low viscosity W/O emulsion. As a result, when we used polyglyceryl-4 diisostearate/polyhydroxystearate/sebacate as a main emulsifier, PEG-30 dipolyhydroxystearate and cetyl PEG/PPG-10/1 dimethicone as a co-emulsifier for stable emulsification system, 0.5 % sodium chloride as an electrolyte, 1 % distearyldimonium chloride as a stabilizer, 0.5 % glyceryl behenate/eicosadioate as an oil gelling agent, emulsion particle is the best. Also, we got the stable and low viscosity W/O emulsion maintained at a constant viscosity at 2,000 cps or less. In addition, we were able to examine the possibility of development of low viscosity fluids type sunscreens with excellent feeling and stability through the application of inorganic sunscreen agents.

Development and Prospect of Emulsion Technology in Cosmetics (화장품에서 유화기술의 발전 및 전망)

  • Kyong, Kee-Yeol;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.209-217
    • /
    • 2006
  • Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.

Preparation of Ag-PS and Ag-PSS Particles by ${\gamma}$-Irradiation and Their Antimicrobial Efficiency against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352

  • Oh Seong-Dae;Byun Bok-Soo;Lee Seung-Ho;Choi Seong-Ho
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.194-198
    • /
    • 2006
  • Polystyrene, PS, particles of 450 nm diameter and poly(styrene-co-styrene sulfonate), PSS, particles of 140-160 nm diameter were prepared by emulsifier-free emulsion polymerization. The surfaces of the PS and PSS particles were coated with Ag nanoparticles for the application of antimicrobial agents by reduction of Ag ions using ${\gamma}$-irradiation. The Ag-PS and Ag-PSS were characterized by High-Resolution Transmittance Electron Microscopy (HR-TEM), Field-Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDXS). The HR-TEM and EDXS data showed that the Ag nanoparticles were loaded on the surface of the PS and PSS particles, respectively. The antimicrobial efficiency of the Ag-PS and Ag-PSS particles (0.4 g) with ca. 100 ppm Ag, which was coated onto yam (KS K 0905-1996 rule), was tested against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 after 100 washing cycles (KS K 0432-1999 rule). The antimicrobial efficiency of the Ag-PS particles against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 was 99.9% after 100 cycles washing., confirming that the Ag-PS particles can be used as antimicrobial agents.

Milk Protein-Stabilized Emulsion Delivery System and Its Application to Foods

  • Ha, Ho-Kyung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.189-196
    • /
    • 2020
  • Milk proteins, such as casein and whey protein, exhibit significant potential as natural emulsifiers for the preparation and stabilization of emulsion-based delivery systems. This can be attributed to their unique functional properties, such as the amphiphilic nature, GRAS (generally recognized as safe) status, high nutritional value, and viscoelastic film-forming ability around oil droplets. In addition, milk protein has been used as a coating material in emulsion-based delivery systems to protect bioactive compounds during food processing and storage owing to its unique functional properties. These properties include the ability to bind lipophilic bioactive compounds and antioxidant activity. In this review, we present the use of milk proteins as emulsifiers for the formation of emulsions and food applications of milk protein-stabilized emulsion delivery systems.

Application of Biosurfactant(Sophorolipid) Produced from Candida bombiocola (Candida bombiocola로 부터 생산된 미생물 계면활성제(Sophorolipid)의 응용에 관한 연구)

  • 김원경;김은기
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.107-111
    • /
    • 1992
  • Chayacterlstics of the sophorolipid produced from Candida bombiocola were investigated as an emulsifier of oil, a detergent or as a dispersant. Improved emulsification of crude oil was observed at high temperature ($70^{\circ}C$) with less than 1% concentration. Sophorolipid solution produced little foam even at reduced surface tension, however performance as a detergent of soiled cloths was poor. Dispersing and stabilizing abilities of sophorolipid solution were proved to be superior to those of chemical dispersants when examined by dispersing $Fe_2O_3$ or carbon black powders.

  • PDF

Synthesis of (2, 3-Dibromopropyl)Phenyl Octadecanoyl Phospate and Its Application as Softening Flame Retardant ((2,3-Dibromopropyl)Phenyl Octadecanoyl Phosphate 합성과 유연난연제로서의 응용)

  • Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.670-677
    • /
    • 1992
  • (2, 3-Dibromopropyl) phenyl phosphate[DPP] was synthesized from 2, 3-dibromopropyl alcohol and chlorophenyl phosphate. Also, (2, 3,-dibromopropyl)phenyl octadecyl phosphate[DPOP] was synthesized from DPP and n-octadecyl chloride. Flame retardants, DPPF and DPOPF, were prepared by blending DPP and DPOP with emulsifier, respectively. The flame retardants prepared were o/w(oil in water) type emulsion flame retardants. As a result of treatments of the flame retardants on various synthetic textiles, DPPF showed only good flame retardancy, but DPOPF showed both good flame retardancy and good softness.

  • PDF

Encapsulation of Anthocyanin from Purple Potato by the Application of Food Polymers

  • Azad, Obyedul Kalam;Cho, Dong Ha;Park, Cheol Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.42-42
    • /
    • 2018
  • Anthocyanins has a strong antioxidant capacity but exhibit poor stability in water. Therefore, stability of anthocyanin from purple potato (Solanum tuberosum L.) was encapsulated by the application of food polymers. Solid formulation of purple potato was prepared using whey protein, tapioca and lecithin by capillary rheometer at $80^{\circ}C$. The ratio of the polymer and potato powder was 2:8. Total phenolic compound, total flavonoid, total anthocyanin and antioxidant activity was investigated by the spectrophotometer. Result revealed that total phenolic compound (TP) ($5321{\mu}g/100g$), total flavonoid (TF) ($1352{\mu}g/100g$) total anthocyanin (TA) ($764{\mu}g/100g$) and free radical antioxidant activity (DPPH) (86%) was higher in 0.01 M acetic acid mediated lecithin based formulation compared to control (Potato powder) (TP: $1357{\mu}g/100g$; TF) ($634{\mu}g/100g$, TA) ($264{\mu}g/100g\;DPPH$) (64%). Lecithin is a strong emulsifier having capacity to extract bioactive compound and encapsulate extracted compound by nonpolar tail and negatively charged head. Therefore, it would be concluded that lecithin might be used as an encapsulating agent for the bioactive compound from purple potato.

  • PDF

Encapsulation of Anthocyanin from Purple Potato by the Application of Food Polymers

  • Azad, Obyedul Kalam;Cho, Dong Ha;Park, Cheol Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.274-274
    • /
    • 2018
  • Anthocyanins has a strong antioxidant capacity but exhibit poor stability in water. Therefore, stability of anthocyanin from purple potato (Solanum tuberosum L.) was encapsulated by the application of food polymers. Solid formulation of purple potato was prepared using whey protein, tapioca and lecithin by capillary rheometer at $80^{\circ}C$. The ratio of the polymer and potato powder was 2:8. Total phenolic compound, total flavonoid, total anthocyanin and antioxidant activity was investigated by the spectrophotometer. Result revealed that total phenolic compound (TP) ($5321{\mu}g/100g$), total flavonoid (TF) ($1352{\mu}g/100g$) total anthocyanin (TA) ($764{\mu}g/100g$) and free radical antioxidant activity (DPPH) (86%) was higher in 0.01 M acetic acid mediated lecithin based formulation compared to control (Potato powder) (TP: $1357{\mu}g/100g$; TF) ($634{\mu}g/100g$, TA) ($264{\mu}g/100g\;DPPH$) (64%). Lecithin is a strong emulsifier having capacity to extract bioactive compound and encapsulate extracted compound by nonpolar tail and negatively charged head. Therefore, it would be concluded that lecithin might be used as an encapsulating agent for the bioactive compound from purple potato.

  • PDF