• Title/Summary/Keyword: apparent polar wander path

Search Result 3, Processing Time 0.014 seconds

Total Field Magnetic Analysis of Nine Seamounts Northwest of the Marshall Islands, Western Pacific

  • Lee, Tae-Gook;Lee, Sang-Mook;Moon, Jae-Woon;Lee, Kie-Hwa
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • Total magnetic field and high-resolution bathymetric data were collected over nine seamounts to the northwest of the Marshall Islands in the western Pacific. Magnetic parameters including inclination and declination were calculated from the magnetic anomalies using inversion algorithm of Plouff (1976), and a corresponding paleomagnetic pole was determined with the magnetic parameters. The paleomagnetic poles determined in this study were compared with the previous apparent polar wander path (APWP) of Pacific plate. Most seamounts of the study area have normal polarity. The study reveals that all nine seamounts in the study area formed in the southern hemisphere during the Cretaceous based on their comparison with the APWP of Pacific plate. The ages estimated from paleomagnetic poles can be divided by age into three groups: the oldest (OSM1 and OSM3), middle age (OSM2, OSM4, and 6-2), and the youngest (OSM5-1, 5-2, 5-3, and 6-1). The fermer two groups and the latter seem to be coincident with two distinct pulses of Cretaceous volcanic activity (115-90 Ma and 83-65 Ma). As a whole the seamounts at southwest of the study area are older than at those northeast.

Paleomagnetism of Three Seamounts Northwest of the Marshall Islands from Magnetic Inversion (자기이상 역산에 의한 마샬제도 북서쪽 세 해저산의 고지자기 해석)

  • Lee, Tae-Gook;Moon, Jai-Woon;Ko, Young-Tak;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Kie-Hwa
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.559-565
    • /
    • 2004
  • Total magnetic field measurements were performed to study paleomagnetism of three seamounts (OSM7, OSM8-1, and OSM8-2) to the northwest of the Marshall Islands in the western Pacific. The study area is located at the Ogasawara Fracture Zone which is a boundary between the Pigafetta and East Mariana basins. The magnetic parameters and paleopoles of three seamounts were derived from inversion of the measured magnetic field. The goodness-of-fit ratio of OSM7 is too low to be included to the estimation of parameters. The complex magnetic anomalies of center, scarcity of flank rift zones and steep slope at OSM7 suggest that the multiple intrusions of magma converge into the center of volcanic edifice. Inclination calculated from the magnetic anomalies of OSM8-1 and OSM8-2 is $-41.2^{\circ}$, and the paleolatitude calculated from the inclination is $23.6^{\circ}S$. The corresponding paleopoles for OSM8-1 and OSM8-2 are $(24^{\circ}42'W,\;48^{\circ}54'N)\;and\;(18^{\circ}18'W,\;48^{\circ}30'N)$, respectively. In comparison with the apparent polar wander path (APWP) of the Pacific plate, the paleopoles are close to 129-Ma pole. The paleopoles and paleolatitudes of OSM8-1 and OSM8-2 suggest that they were formed at similar time and location. The seamounts have drifted northward about $41^{\circ}$ from the paleolatitude to present latitude of seamounts.

Paleomagnetic Study on Cretaceous Rocks in Haenam Area (해남지역의 백악기 암석에 대한 고지자기 연구)

  • 임무택;이윤수;강희철;김주용;박인화
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.119-131
    • /
    • 2001
  • A mean characteristic remanent magnetization was obtained for the first time in Korea from volcanic and pyroclastic sedimentary rocks distributed in Haenam Area, located in southwestern part of the Korean Peninsula. The age of the prevailing rocks in this area belongs mostly to Late Cretaceous, with a few exceptions of Early Cretaceous, mainly based on K/Ar whole rock age dating. Characteristic remanent magnetizations of these have both normal and reverse polarities with antipodal direction, which were interpreted to be the primary remanent magnetizations obtained by the ambient Earth's magnetic field at the time of formation of the concerned rocks. The source magnetic minerals of the remanent magnetization has been identified as magnetite. The mean direction of characteristic remanent magnetization obtained from the Late Cretaceous rocks in this study is Dm/Im=21.4 supper(o)/57.1 supper(o) (${\alpha}_{95}=13.4^{\circ}$, k=350.0). The paleomagnetic pole position calculated from this result for the Late Cretaceous, is $72.5^{\circ}N/199.9^{\circ}E$ (dp/dm= $14.2^{\circ}/19.5^{\circ}E$), which matches well with those of 80 Ma ($76.2^{\circ}N/198.9^{\circ}E$) and 90 Ma ($76.2^{\circ}N/200.1^{\circ}E$) of the Eurasian Continent's APWP (Apparent Polar Wander Path). This result strongly indicates that the studied area, belonging to the Eurasian Continent, have suffered very little geotectonic movement after the Late Cretaceous. The deflection of declination of remanence from Early Cretaceous rocks in the study area may indicate that the micro-block was counterclockwisely rotated with vertical axis between the late of Early Cretaceous and the early of Late Cretaceous.

  • PDF