• 제목/요약/키워드: apoptotic neuronal cell death

검색결과 116건 처리시간 0.023초

Inhibition of Nitric Oxide-induced Neuronal Apoptosis in PC12 Cells by Epigallocatechin Gallate

  • Jung, Ji-Yeon;Jeong, Yeon-Jin;Han, Chang-Ryoung;Kim, Sun Hun;Kim, Hyun-Jin;Lee, Ki-Heon;Park, Ha-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.239-246
    • /
    • 2005
  • In the central nervous system, nitric oxide (NO) is associated with many pathological diseases such as brain ischemia, neurodegeneration and inflammation. The epigallocatechin gallate (EGCG), a major compound of green tea, is recognized as protective substance against neuronal diseases. This study is aimed to investigate the effect of EGCG on NO-induced cell death in PC12 cells. Administration of sodium nitroprusside (SNP), a NO donor, decreased cell viability in a dose- and time-dependent manner and induced genomic DNA fragmentation with cell shrinkage and chromatin condensation. EGCG diminished the decrement of cell viability and the formation of apoptotic morphologenic changes as well as DNA fragmentation by SNP. EGCG played as an antioxidant that attenuated the production of reactive oxygen species (ROS) by SNP. The cells treated with SNP showed downregulation of Bcl-2, but upregulation of Bax. EGCG ameliorated the altered expression of Bcl-2 and Bax by SNP. The release of cytochrome c from mitochondria into cytosol and expression of voltage -dependent anion channel (VDAC)1, a cytochrome c releasing channel in mitochondria, were increased in SNP-treated cells, whereas were attenuated by EGCG. The enhancement of caspase-9, preceding mitochondria-dependent pathway, caspase-8 and death receptor-dependent pathway, as well as caspase-3 activities were suppressed by EGCG. SNP upragulated Fas and Fas-L, which are death receptor assembly, whereas EGCG ameliorated the expression of Fas enhanced by SNP. These results demonstrated that EGCG has a protective effect against SNP-induced apoptosis in PC12 cells, through scavenging ROS and regulating the mitocondria- and death receptor-mediated signal pathway. The present study suggest that EGCG might be a natural neuroprotective substance.

청폐사간탕(淸肺潟肝湯)이 MCAO에 의한 흰쥐의 뇌허혈 손상에 미치는 영향 (Effect of Chungpaesagan-tang on cerebral Ischemic Damage Induced by MCAO in Rats)

  • 정광식;김범회;황원덕
    • 대한예방한의학회지
    • /
    • 제13권1호
    • /
    • pp.13-27
    • /
    • 2009
  • This study aimed to validate neuroprotective effect of Chungpaesagan-tang on the early stage of cerebral ischemic damage. Cerebral ischemic damage was induced by the middle cerebral artery occlusion (MCAO) for 2 hours in the Sprague-Dawley rats. Water extract of Chungpaesagan-tang(8.7g/kg) was administered orally twice at 1 and 4 hours after the MCAO. Neurological score was tested at 3 and 24 hours after the MCAO and Chungpaesagan-tang administration. At 24 hours after the MCAO, infarct volume and edema ratio was evaluated with the TTC staining. Apoptotic cell death in cerebral cortex and caudate putamen was observed with cresyl violet staining and TUNEL labeling. Bax expression in the MCAO rat brain was stained with immunohistochemistry. Chungpaesagan-tang improved neurological and behavioral impairment of the MCAO rats and reduced infarct area, infarct volume and brain edema formation. Chungpaesagan-tang attenuated cell death percentage in cortex penumbra and reduced TUNEL positive cells in cortex penumbra and in caudate putamen of the MCAO rats. Chungpaesagan-tang reduced Bax positive neurons in caudate putamen and reduced c-Fos positive neurons in cortex penumbra of the MCAO rats. Chungpaesagan-tang intensified neuronal HSP72 expression in cortex penumbra of the MCAO rats. In results, Chunpaesagan-tang reduces infarct volume and edema formation through anti-apoptotic effect. This result suggests that Chunapaesagan-tang has an adequate neuroprotective effect on the early stage of cerebral ischemic damage.

  • PDF

Reactive microglia and mitochondrial unfolded protein response following ventriculomegaly and behavior defects in kaolin-induced hydrocephalus

  • Zhu, Jiebo;Lee, Min Joung;Chang, Hee Jin;Ju, Xianshu;Cui, Jianchen;Lee, Yu Lim;Go, Dahyun;Chung, Woosuk;Oh, Eungseok;Heo, Jun Young
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.181-186
    • /
    • 2022
  • Ventriculomegaly induced by the abnormal accumulation of cerebrospinal fluid (CSF) leads to hydrocephalus, which is accompanied by neuroinflammation and mitochondrial oxidative stress. The mitochondrial stress activates mitochondrial unfolded protein response (UPRmt), which is essential for mitochondrial protein homeostasis. However, the association of inflammatory response and UPRmt in the pathogenesis of hydrocephalus is still unclear. To assess their relevance in the pathogenesis of hydrocephalus, we established a kaolin-induced hydrocephalus model in 8-week-old male C57BL/6J mice and evaluated it over time. We found that kaolin-injected mice showed prominent ventricular dilation, motor behavior defects at the 3-day, followed by the activation of microglia and UPRmt in the motor cortex at the 5-day. In addition, PARP-1/NF-κB signaling and apoptotic cell death appeared at the 5-day. Taken together, our findings demonstrate that activation of microglia and UPRmt occurs after hydrocephalic ventricular expansion and behavioral abnormalities which could be lead to apoptotic neuronal cell death, providing a new perspective on the pathogenic mechanism of hydrocephalus.

Protective Effects of Potassium Ion on Rotenone-Induced Apoptosis in Neuronal (Neuro 2A) Cells

  • Park, Ji-Hwan;Kim, Yun-Ha;Moon, Seong-Keun;Kim, Tae-Young;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권6호
    • /
    • pp.456-464
    • /
    • 2005
  • Objective : The authors investigated whether rotenone induces cellular death also in non-dopaminergic neurons and high concentration of potassium ion can show protective effect for non-dopaminergic neuron in case of rotenone-induced cytotoxicity. Methods : Neuro 2A cells was treated with rotenone, and their survival as well as cell death mechanism was estimated using 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium[MTT] assay, Lactate dehydrogenase[LDH] release assay, fluorescence microscopy, and agarose gel electrophoresis. The changes in rotenone-treated cells was also studied after co-treatment of 50mM KCl. And the protective effect of KCl was evaluated by mitochondrial membrane potential assay and compared with the effects of various antioxidants. Results : Neuro 2A cells treated with rotenone underwent apoptotic death showing chromosome condensation and fragmentation as well as DNA laddering. Co-incubation of neuro 2A cells with 50mM KCl prevented it from the cytotoxicity induced by rotenone. Intracellular accumulation of reactive oxygen species[ROS] resulting by rotenone were significantly reduced by 50mM KCl. Potassium exhibited significantly similar potency compared to the antioxidants. Conclusion : The present findings showed that potassium attenuated rotenone-induced cytotoxicity, intracellular accumulation of ROS, and fragmentation of DNA in Neuro 2A cells. These findings suggest the therapeutic potential of potassium ion in neuronal apoptosis, but the practical application of high concentration of potassium ion remains to be settled.

Ethanol Induces Cell Death by Activating Caspase-3 in the Rat Cerebral Cortex

  • Han, Jae Yoon;Joo, Yeon;Kim, Yoon Sook;Lee, Young Ki;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.189-195
    • /
    • 2005
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. We examined the effects of ethanol on the rat brain during synaptogenesis when a spurt in brain growth occurs. This period corresponds to the first 2 postnatal weeks in rats and is very sensitive to ethanol exposure. Ethanol was administered subcutaneously to 7-day- postnatal rat pups by a dosing regimen of 3 g/kg at 0 h and again at 2 h. Blood ethanol levels peaked ($677{\pm}16.4mg/dl$) at 4 h after the first ethanol administration. The cerebral cortexes of the ethanol-treated group showed several typical symptoms of apoptosis such as chromosome condensation and disintegration of cell bodies. Activated caspase-3 positive cells were found in the cortex within 2 h of the first injection, and reached a peak at 12 h. In addition, TUNEL staining revealed DNA fragmentation in the same regions. These results demonstrate that acute ethanol administration causes neuronal cell death via a caspase-3-dependent pathway within 24 h, suggesting that activation of caspase-3 is a marker of the developmental neurotoxicity of ethanol.

Sodium Cyanide로 유도된 신경아세포종 세포주에서 오수유의 신경상해 보호효과 (Anti-neuronal Injury Effect of Evodiae Fructus Water Extract in Sodium Cyanide-induced SK-N-SH Cell Lines)

  • 장우석;이소연;윤현덕;신오철;박창국;박치상
    • 대한한의학회지
    • /
    • 제26권3호
    • /
    • pp.135-145
    • /
    • 2005
  • Objectives : This study investigated effect of Evodiae fructus water extract (EVOR) on apoptotic cell death induced by NaCN in SK-N-SH neuroblastoma cell lines. NaCN stimulates glutamate release which can activate glutamate receptors to initiate excitotoxic processes. This study examines the role of EVOR in mediating NaCN-induced cytotoxicity. Methods & Results : Cytotoxicity was assessed by measuring lactate dehydrogenase (LDH) in the culture media. NaCN(0.1mM) produced cytotoxicity following 12hrs of incubation. NaCN-induced cytotoxicity was partially blocked by EVOR. The treatment of EVOR in simultaneous exposure of cultures to NaCN provided complete protection against cytotoxicity. NaCN-induced cytotoxicity was found to inhibit DNA fragmentation, repaired by cell cycle and simultaneous exposure to NaCN, regenerated with neurite outgrowh by EVOR. These results indicate thaf damage by NaCN in neumnal cell cultures was repaired by EVOR, whereas NaCN-induced cytotoxicity is blocked Primarily by activation of anti-apoptosis. Conclusions : These results suggest that EVOR may be beneficial for the treatment of dementia and other degenerative problems of the central nervous system.

  • PDF

설치류 Neuro-2A 신경세포에서 홍경천 에탄올 추출물의 소포체 스트레스 억제효과 (Inhibitory Effects of Ethanol Extract of Rhodiola Sacra on Endoplasmic Reticulum Stress in Neuro-2A Cells)

  • 조남은;송영순
    • 디지털융복합연구
    • /
    • 제17권8호
    • /
    • pp.265-270
    • /
    • 2019
  • 성장하는 증거는 소포체 (ER) 스트레스의 매개 세포 사멸이 알츠하이머병을 포함한 신경 퇴행성 질환의 병리학적 발달에 중요한 역할을 한다. 로디올라 사크라(ERS)의 에탄올 추출물은 ER 스트레스 유도제인 호모시스테인(Hcy)세포 사멸과 ER 스트레스의 신경 neuro -2A 세포를 보호할 수 있는지를 조사한다. 뉴런 세포에서 Hcy는 MTT 분석에 의해 확인된 바와 같이 세포 생존 가능성은 현저히 감소시켰고, Annexin V 양성 세포의 사멸을 유도했다. ERS로 전처리한 Hcy세포 생존력 및 세포 사멸 손실은 약화되었으며, Hcy는 C/EBP 상 동성 단백질과 78-kDa 포도당 조절 단백질의 발현 및 X-box 결합 단백질 -1 (xbp1) mRNA의 접합에 스트레스를 유도했다. ESR은 Hcy에 의해 유도된 xbp-1 mRNA 접합, GRP78 및 CHOP 세포를 감소시켜 Hcy-induced ER 스트레스 및 세포 사멸에 대한 보호를 나타내며, Western blotting 분석에 heme oxygenase-1의 발현 및 HO-1 효소 활성 억제는 hemin에 의한 세포 사멸을 감소시키는 등 신경 퇴행성 질환에 치료적 가치를 보여준다.

Protection of Amyloid ${\beta}$ Protein (25-35)-induced Neuronal Cell Damage by Methanol Extract of New Stem of Phyllostachys nigra Munro var. henonis Stapf in Cultured Rat Cortical Neuron

  • Ban, Ju-Yeon;Cho, Soon-Ock;Kwon, Soon-Ho;Kim, Jin-Bae;Song, Nak-Sul;Bae, Ki-Whan;Song, Kyung-Sik;Seng, Yeon-Hee
    • 한국약용작물학회지
    • /
    • 제13권2호
    • /
    • pp.95-102
    • /
    • 2005
  • Caulis Bambusae in Taenia is widely used in Korea and China due to its various pharmacological activity. The present study aims to investigate the effect of the methanol extract of Caulis Bambusae in Taenia (CB) from Phyllostachys nigra Munro var. henonis Stapf (Gramineae) on amyloid ${\beta}$ protein (25-35) $(A{\beta}\;(25-35))$, a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. CB, over a concentration range of $10-50{\mu}g/{\mu}l$, inhibited the $A{\beta}\;(25-35)\;(10\;{\mu}M)$-induced neuronal cell death, as assessed by a 3-[4,5-dimethyIthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. CB $(50\;{\mu}g/{\mu}l)$ inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$, (25-35) which was measured by HPLC. Pretreatment of CB $(50\;{\mu}g/{\mu}l)$ inhibited $10{\mu}M\;A{\beta}$ (25-35)-induced elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, fluo-4 AM, and generation of reactive oxygen species. These results suggest that CB prevents $A{\beta}$ (25-35)-induced neuronal ell damage in vitro.

Protection of spontaneous and glutamate-induced neuronal damages by Soeumin Sibjeundaibo-tang and Soyangin Sibimijihwang-tang in cultured mice cerebrocortical cells

  • Lee, Mi-Young;Ma, Jin-Yeul;Choo, Young-Kug;Jung, Kyu-Yong
    • Advances in Traditional Medicine
    • /
    • 제1권1호
    • /
    • pp.55-63
    • /
    • 2000
  • Soeumin Sibjeundaibo-tang (SJDBT) and Soyangin Sibimijihwang-tang (SMJHT) have been used traditionally to improve the systemic blood circulation and biological energy production in the patients with circulatory and neuronal diseases. The object of this study is to determine the protective effects of SJDBT and SMJHT extracts on the spontaneous and glutamate-induced neuronal damages in cultured cells derived from mice cerebral cortex. At 14 days after beginning the cultures, the activity of lactate dehydrogenase released into the culture media was significantly decreased by treatment of cerebroneuronal cells with SJDBT and SMJHT (0.1 mg/ml) for 7 days. By comparison with the normal cells, cerebroneuronal morphology was dramatically changed by treatment of glutamate (1 mM) for 12 hrs, and this was conspicuously recovered by pretreatment of cerebroneural cells with SJDBT and SMJHT (0.1-1.0 mg/ml) for 2 days. Moreover, glutamated-induced DNA fragmentation was also protected by pretreatment of cerebroneuronal cells with those extracts. These results suggest that naturally occurring and glutamate-induced degeneration of cultured cerebrocortical cells may be related, in part, to the process of apoptotic cell death. The pharmacological properties of SJDBT and SMJHT extracts to improve cerebroneuronal degeneration may be considered as one of useful medicines that can prevent cerebrocortical impairments resulted from age-dependent and excitotoxicity-induced neuronal degeneration in human brain.

  • PDF

Glutamate로 유도된 C6 glial 세포 자멸사에 대한 청심연자음(淸心蓮子飮)의 보호효과 (Protective Effects of Chungsimyeonja-eum on Glutamate-induced Apoptosis in C6 Glial Cells)

  • 고석재;신용진;장원석;하예진;이선아;안민섭;권오상;신선호
    • 대한한방내과학회지
    • /
    • 제31권1호
    • /
    • pp.54-65
    • /
    • 2010
  • Objective : The water extract of Chungsimyeonja-eum (CSYJE) has traditionally been used in treatments of heart diseases and brain diseases in Oriental medicine. However, little is known about the mechanism by which CSYJE protects neuronal cells from injury damages. Therefore, in this study we attempted to elucidate the mechanism of the cytoprotective effect of the CSYJE extract on glutamate-induced C6 glial cell death. Methods : Cultured cells were pretreated with CSYJE and exposed to glutamate, cell damage was assessed by using MTT assay and propidium iodide (PI), probe 2',7'-dichlorofluorescein diacetate (DCF-DA) staining. Western blotting was performed using anti-procaspase-3 and anti-PARP, respectively. Result : We determined the elevated cell viability by CSYJE extract on glutamate-induced C6 glial cell death. Glutamate induced DNA fragmentation on C6 glial cells but pre-treatment with CSYJE inhibited DNA fragmentation. One of the main mediators of glutamate-induced cytotoxicity was known to generation of reactive oxygen species (ROS). Pre-treatment with CSYJE inhibited this ROS generation from glutamate-stimulated C6 glial cells. Also, we identified that the ROS-induced DCF-DA green fluorescence was reduced by CSYJE pre-treatment. The critical markers of apoptotic cell death are the cleavages of procaspase-3 protease and PARP proteins, so we checked the expression level and cleavages of procaspase-3 protease and PARP proteins. Glutamate-treated C6 glial cells showed the cleavages of procaspase-3 protease and PARP proteins and followed the reduction of expression of these proteins. Conclusion : These findings indicate that CSYJE may prevent cell death from glutamate-induced C6 glial cell death by inhibiting the ROS generation and procaspase-3 and PARP expression.