• Title/Summary/Keyword: apoptotic neuronal cell death

Search Result 117, Processing Time 0.037 seconds

Effect of Daeseungki-tang on Apoptotic Neuronal Cell Death of MCAO Rats (대승기탕(大承氣湯)이 중대뇌동맥 폐쇄 흰쥐의 신경세포 자연사에 미치는 영향)

  • Choi, Eun-Bin;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.403-409
    • /
    • 2008
  • In Oriental medicine daeseungki-tang is one of the prescription that is used clinically for constipation of paralytics. The objective of the study was to observe the effect of daeseungki-tang on apoptotic neuronal cell death. In the present study, middle cerebral artery occlusion(MCAO) rats were treated with daeseungi-tang for 5 days and the edema percentage of cerebral hemisphere of MCAO rats were investigated primary. Secondary, appearances of Bax, Bcl-2,-factors that is related to apoptotic neuronal cell death - and HSP72 in the brain of MCAO rats were investigated via immunohistochemistry. Daeseungki-tang significantly decreased edema percentage of the cerebral hemisphere of MCAO rats. Daeseungki-tang significantly decreased Bax positive cells, but did not change the apperances of Bcl-2 positive cells in the penumbra of the cerebral cortex and the caudoputamen of MCAO rats. Daeseungki-tang significantly decreased HSP72 positive cells in the penumbra of the cerebral cortex, but not in the caudoputamen of MCAO rats. Based on the present results, it can be suggested that treatment with daeseungki-tang may decrease edema of the cerebral hemisphere and restrain apoptotic neuronal cell death in the penumbra of the cerebral cortex.

Characterization of Dopaminergic Neuronal Cell Death Induced by either N-Methyl-4-Phenylpyridinium of 6-hydroxydopamine (N-메칠-4-페닐피리디니움 및 6-히드록시도파민으로 유도된 도파민계 신경세포 사멸 기작의 규명)

  • O, Yeong-Jun;Choi, Won-Seok
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.86-93
    • /
    • 1997
  • Even though both N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine have been widely used to establish the experimental model for dopaminergic neuronal ce ll death. mechanisms underlying this phenomenon have not been firmly explored. To investigate how these dopaminergic neurotoxins induce neuronal cell death, murine dopaminergic neuronal cell line, MN9D cells were treated with various concentration of either 6-hydroxydopamine or active form of MPTP, N methyl-4-phenylpyridinium (MPP$^+$). Treatment of cells with 5-100 uM 6-hydroxydopamine resulted in apoptotic cell death whereas cell death induced by 5~50 uM MPP$^+$ was not demonstrated typical apoptotic characteristics such as cell shrinkage, apoptotic body and nuclear condensation. Cell death induced by 6-hydroxydopamine was partially blocked in the presence of antioxidants including soluble form of vitamin E or desferrioxamine suggesting that generation of oxidative stress may be associated with 6-hydroxydopamine-induced cell death in MN9D cells. In contrast, MPP$^+$-induced cell death was not blocked by treatment with any of antioxidants tested. As previously demonstrated that MPP$^+$ caused metabolic alterations such as glucose metabolism, removal of glucose from the medium partially inhibited MPP$^+$-induced cell death suggesting excessive cycles of glycolysis may be associated with MPP$^+$-induced cell death. Taken together, these studies demonstrate that two types of dopaminergic neurotoxins recruit distinct neuronal cell death pathways.

  • PDF

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

Neuroprotective Effects of Daebowonjeon on PC12 Cells Exposed to Ischemia (허혈 상태의 PC12 세포에 대한 대보원전(大補元煎)의 신경보호효과)

  • Kim, Bong-Sang;Lee, Sun-Woo;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2007
  • Neuronal ischemia is a pathological process caused by a lack of oxygen (anoxia) and glucose (hypoglycemia), resulting in neuronal death. It is believed that apoptosis is one of the mechanisms involved in ischemic cell death. Neuronal apoptosis is a process characterized by nuclear DNA fragmentation, changes of plasma membrane organization. To elucidate the mechanism of neuronal death following ischemic insult and to develop neuroprotective effects of Daebowonjeon(DBWJ) against ischemic damage, in vitro models are used. In vitro models of cell death have been devloped with pheochromocytoma (PC12) cell, which have become widely used as neuronal models of oxidative stress, trophic factor, serum deprivation and chemical hypoxia. Using a special ischemic device and PC12 cultures, we investigated an in vitro model of ischemia based on combined Oxygen and Glucose Deprivation (OGD) insult, followed by reoxygenation, mimicking the pathological conditions of ischemia. In this study, Daebowonjeon rescued PC12 cells from Oxygen-Glucose Deprivation (OGD)-induced cell death in a dose-dependent manner The nuclear staining of PC12 cells clearly showed that DBWJ attenuated nuclear condensation and fragmentation which represent typical neuronal apoptotic characteristics. DBWJ also prevents the LDH release and induction of Hypoxia Inducing Factor (HIF)-1 by OGD-exposed PC12 cells. Furthermore, DBWJ reduced the activation of polyADP-ribose polymerase (PARP) by OGO-exposed PC12 cells. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that oriental medicine, such as DBWJ, may prevent PC12 cell from OG D-induced neuronal death by inhibiting the apoptotic process.

Apoptotic Cell Death in TrkA-overexpressing Cells: Kinetic Regulation of ERK Phosphorylation and Caspase-7 Activation

  • Jung, Eun Joo;Kim, Deok Ryong
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • The TrkA tyrosine kinase is activated by autophosphorylation in response to NGF, and plays an important role in cell survival, differentiation, and apoptosis. To investigate its role in cell fate determination, we produced stable TrkA-inducible SK-N-MC and U2OS cell lines using the Tet-On system. Interestingly, TrkA overexpression induced substantial cell death even in the absence of NGF, by stimulating ERK phosphorylation and caspase-7 activation leading to PARP cleavage. TrkA-mediated cell death was shown by the annexin-V binding assay to be, at least in part, apoptotic in both SK-N-MC and U2OS cells. Furthermore, the truncated form (p18) of Bax accumulated in the TrkA-induced cells, suggesting that TrkA induces mitochondria-mediated apoptosis. NGF treatment augmented the cell death induced by TrkA overexpression. This TrkA-induced cell death was blocked by the tyrosine kinase inhibitors, K-252a and GW441756. Moreover, TrkA overexpression inhibited long-term proliferation of both the neuronal SK-N-MC cells and the non-neuronal U2OS cells, suggesting a potential role of TrkA as a tumor suppressor.

Apoptotic Cell Death Following Traumatic Injury to the Central Nervous System

  • Springer, Joe E.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.94-105
    • /
    • 2002
  • Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

Neuroprotective Effect of Ginseng radix on ICH-induced Rats

  • Jang, Kwan-Ho;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.87-97
    • /
    • 2005
  • Backgrounds: Intracerebral hemon-hage is one of the most devastating types of stroke. Ginseng radix, the root of Panax Ginseng, C. A. MEYER (Araliaceae), is one of the most famous medicinal herbs with various therapeutic applications. Objectives: In the present study, the effect of aqueous extract of Ginseng radix on intracerebral hemorrhage-induced neuronal cell death in rats was investigated. Materials and Methods: Step-down avoidance task, Nissl staining, immunohistochemistry for caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were used for this study. Results: The present results show that hemorrhage-induced lesion volume and apoptotic neuronal cell death in the striatum were significantly suppressed by treatment with Ginseng radix, resulting in enhancement of short-ten-n memory. Conclusions: We have shown that Ginseng radix has a neuroprotective effect on stroke, and aids the recovery from central nervous system sequelae following stroke.

  • PDF

Protective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death (등대(燈臺)풀 유래 Furosin의 glutamate에 의한 HT22 세포 사멸 억제 효과)

  • Baek, Ji Yun;Song, Ji Hoon;Choi, Sung Youl
    • The Journal of Korean Medicine
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2018
  • Objectives: In the brain, glutamate is the most important excitable neurotransmitter in physiological and pathological conditions. However, the high level of glutamate induces neuronal cell death due to exitotoxicity and oxidative stress. The present study investigated to evaluate a possible neuroprotective effect of furosin isolated from Euphorbia helioscopia against glutamate-induced HT22 cell death. Methods: Furosin was isolated from methanol extract of Euphorbia helioscopia and examined whether it protects glutamate-induced neuronal cell death. The cell viability was determined using Ez-Cytox assay. Anti-oxidative effect of furosin was determined by DPPH scavenging activities, and the levels of intracellular reactive oxygen species (ROS) were determined by the fluorescent intensity after staining the cells with $H_2DCFDA$. To evaluate apoptotic cell death, we performed nuclear staining and image-based cytometeric analysis. Results: The cell viability was significantly increased by treatement with furosin compared with the treatment with glutamate. Furosin showed a strong DPPH radical scavenging activity ($EC50=1.83{\mu}M$) and prevented the accumulation of intra cellular ROS. Finally, the presence of 50 and $100{\mu}M$ furosin significantly the percentage of apoptotic cells compared with glutamate treatment. Conclusion: The present study found that furosin is a potent neuroprotectant against glutamate-induced oxidative stress through inhibition of apoptotic cell death induced by glutamate. Therefore, the present study suggests that furosin as a bioactive compound of E. helioscopia can be a useful source to develop a drug for the treatment of neurodegenerative diseases and acute brain injuries.

The Effects of Achyranthis Radix on Short-term Memory and Apoptosis in the Hippocampus of the Gerbil with Transient Global Ischemia (우슬이 뇌허혈 유발 모래쥐의 해마에서 신경세포 사멸과 단기기억력에 미치는 영향)

  • Yoon, Hyun-Seok;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.15-30
    • /
    • 2011
  • Objectives : The present study investigated the effects of Achyranthis Radix on short-term memory, apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils. Methods : The gerbils were divided into 5 groups(n=10); Sham operation group, ischemia-induced group, ischemia-induced and 50 mg/kg Achyranthis Radix-treated group, ischemia-induced and 100 mg/kg Achyranthis Radix-treated group, ischemia-induced and 200 mg/kg Achyranthis Radix-treated group. For this study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay, immunohistochemistry for caspase-3 and BrdU(5-Bromo-2'-deoxyuridine), and western blotting for bax, bcl-2 were performed. Results : The results revealed that ischemic injury impaired short-term memory and increased apoototic neuronal cell death in the hippocampal CA1(cornu ammonis area 1) region. Ischemic injury enhanced cell proliferation in the hippocampal CA1 region, the compensatory and adaptive process for excessive apoptosis. Achyranthis Radix treatment improved short-term memory by suppressing ischemia-induced apoptotic neuronal cell death in the hippocampal CA1 region. Also, Achyranthis Radix suppressed the ischemia-induced increase in cell proliferation in the hippocampal CA1 region. Conclusions : We showed that Achyranthis Radix alleviates ischemia-induced apoptotic neuronal cell death, thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.

Bee Venom Suppresses Ischemia-induced Increment of Apoptosis and Cell Proliferation in Hippocampal Dentate Gyrus

  • Lim Baek Vin;Lee Choong Yeol;Kang Jin Oh;Kim Chang Ju;Cho Sonhae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.236-242
    • /
    • 2004
  • Cerebral ischemia resulting from transient or permanent occlusion of cerebral arteries leads to neuronal cell death and eventually causes neurological impairments. Bee venom has been used for the treatment inflammatory disease. In the present study, the effects of bee venom on apoptosis and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils were investigated using immunohistochemistry for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), caspase-3, and 5-bromo-2'-deoxyuridine (BrdU). It was shown that apoptotic cell death and cell proliferation in the hippocampal dentate gyrus were significantly increased following transient global ischemia in gerbils and that treatment of bee venom suppressed the ischemia-induced increase in apoptosis and cell proliferation in the dentate gyrus. The present results also showed that 1 mg/kg bee-venom treatment suppressed the ischemia-induced increasing apoptosis, cell proliferation, and COX-2 expression in the dentate gyrus. It is possible that the suppression of cell proliferation is due to the reduction of apoptotic cell death by treatment of bee venom. In the present study, bee venom was shown to prosses anti-apoptotic effect in ischemic brain disease, and this protective effect of bee venom against ischemia-induced neuronal cell death is closely associated with suppression on caspase-3 expression.